Esophagus

Saturday, 11 October 2025

7:39 PM

Fantastic—let's build a fellowship-level, exam-ready, clinic-useful **Esophagus Master Curriculum**. We'll use this outline to pace the review, then work through modules one by one with algorithms, mini-cases, images/figures (described), quick calculations, and "don't-miss" pitfalls. Depth is aimed at practicing gastroenterologists.

Program architecture

What you'll get in each module

- Learning objectives (what you should be able to decide/do).
- Core knowledge distilled to decision algorithms.
- Skills & interpretation: HRM, pH-impedance, EndoFLIP, barium, EGD pathology recognition.
- Numbers that matter (cutoffs and thresholds).
- Pitfalls & variants (boards and real-life traps).
- 10-minute drill: rapid cases/ECGs-style images/strips.
- One page takeaway (checklist or flowchart).

Prerequisites

- · Comfortable with EGD, sedation, and hemostasis basics.
- Working fluency with radiology/physiology terms (IRP, DCI, AET, DL; LA & Prague; EREFS; Hill grade).

Assessments (lightweight)

- Pre-test (20 Q). Mid-course skill check (trace reads). Post-test (40 Q).
- Log: ≥20 HRM and ≥15 pH-impedance interpretations; ≥10 dilation strategy plans; ≥5 Barrett's dysplasia management plans.

Modules (sequence + scope)

1) Symptoms & triage: the front door

- Alarm features; initial dysphagia algorithm; when to scope vs test first; when to involve surgery.
- Essential orders: CBC/iron, celiac panel context, barium vs EGD sequencing.

2) Anatomy & physiology that changes decisions

- Sphincters, EGJ morphology, hiatal mechanics; peristalsis physiology; anti-reflux barrier.
- Hill grading, diaphragmatic pinch, esophageal body pressure patterns.

3) Diagnostic toolkit & interpretation bootcamp

- EGD: systematic photo-doc; targeted biopsies (Barrett's, EoE, infections); Prague & LA scoring; EREFS.
- Barium: timed barium swallow (TBS), tablet test; classic patterns.
- HRM (Chicago v4.0): IRP, DCI, DL, CFV; motility classification logic.
- Ambulatory reflux testing: BRAVO vs catheter pH-impedance; Lyon framework (AET, reflux episodes, MNBI, PSPW).
- EndoFLIP: distensibility index, FLIP panometry patterns (EGJ types I–III).
- EUS/CT/PET: when staging changes management.

4) GERD & reflux spectrum

- Typical/atypical reflux; NERD vs erosive; PPI optimization; bedtime H2-blocker logic; nocturnal acid breakthrough reality check.
- Refractory GERD: testing off vs on therapy; hiatal hernia's role; MNBI/PSPW to adjudicate.
- Extraesophageal symptoms—what GI owns vs co-manages.
- Procedures: TIF, magnetic sphincter augmentation, fundoplication—selection and counseling.

5) Barrett's esophagus & early neoplasia

- Risk stratification; surveillance intervals by histology; endoscopic eradication therapy (EMR/ESD + RFA/cryotherapy).
- Post-ablation care (recurrence surveillance, PPI strategy).
- T1a vs T1b cancer: endoscopic vs surgical vs multimodal.

6) Eosinophilic esophagitis (EoE) & cousins

- Diagnosis (symptoms + ≥15 eos/hpf; biopsy protocol; EREFS).
- Treatment lanes: PPI, topical steroids, elimination diets; dilation strategy; role of biologics.
- Monitoring for histologic and symptomatic remission.

7) Other immune/inflammatory esophagitides

- Lymphocytic esophagitis; lichen planus; Crohn's; Behçet; sarcoid; GVHD; IgG4-related disease.
- Patterns on histology; treatment frameworks and red flags.

8) Infectious esophagitis

• Candida, HSV, CMV, HIV-associated ulcers; bacterial/mycotic zebras.

• When to treat empirically vs biopsy; transplant/oncology nuances.

9) Primary motility disorders (Chicago v4.0 in action)

- Achalasia types I–III, EGJOO, distal spasm, hypercontractile, IEM, absent contractility.
- Choosing therapy: POEM vs LHM vs pneumatic dilation; type-specific outcomes; reflux aftermath and monitoring.
- Post-therapy assessment (TBS, HRM/FLIP, pH testing).

10) Secondary motility/pseudoachalasia

- Scleroderma esophagus, Chagas, opioid-induced dysfunction; malignancy-related pseudoachalasia.
- Distinguishing features; management that actually helps.

11) Functional esophageal disorders

- Functional heartburn, reflux hypersensitivity, functional chest pain, functional dysphagia, globus.
- Brain-gut framing; neuromodulators, behavioral therapy, eHealth tools; avoiding iatrogenesis.

12) Strictures, rings, webs

- Peptic, caustic, radiation, anastomotic; Schatzki and cervical webs.
- Dilation strategy (bougie vs balloon), steroid injection, mitomycin-C, stent use; recurrence prevention.

13) Injury & iatrogenic emergencies

- Pill esophagitis; caustic ingestion (acute care → late strictures; Zargar staging logic); thermal and radiation injury.
- Mallory-Weiss; Boerhaave: diagnosis, antibiotics, stent vs surgery, time-to-intervention.
- Intramural hematoma; foreign body/food bolus (ESGE/ASGE timing; glucagon myths).

14) Diverticula

- Zenker, Killian–Jamieson, mid-esophageal traction, epiphrenic.
- Flexible septotomy, Z-POEM/D-POEM, stapled/surgical—selection and complications.

15) Vascular & hemorrhagic lesions

- Esophageal varices (screening, EVL, vasoactives, antibiotics, TIPS triggers); "downhill" varices;
 Dieulafoy, angioectasias.
- Anticoagulation/antiplatelet management around banding.

16) Benign and subepithelial tumors

- Leiomyoma, granular cell tumor, lipoma, hemangioma, schwannoma.
- Subepithelial lesion work-up (EUS features, bite-on-bite/MIAB, STER/ESD candidacy).

17) Esophageal cancer (SCC & EAC)

- Risk factors and pathways; staging (EUS/CT/PET); neoadjuvant paradigms.
- Endoscopic palliation (self-expandable stents, radiation coordination), nutrition and dysphagia relief.

18) Congenital & extrinsic compression in adults

- Atresia/TEF survivors; congenital stenosis; inlet patch.
- Vascular rings, aberrant subclavian ("dysphagia lusoria"), osteophytes, left atrial enlargement.

19) Quality, safety, and documentation

- Photo-documentation sets; adverse event prevention; perforation/bleeding algorithms.
- Reporting standards: LA grade, Prague C&M, EREFS, Hill grade; pathology requests that get you the right answer.

20) Special populations & contexts

- Pregnancy; elderly/frail; post-bariatric; immunocompromised; post-transplant.
- · Pediatrics-to-adult transitions (what adult GI must know).

21) Emerging tech & research literacy

- FLIP panometry in clinic; mucosal impedance; Al in Barrett's detection; magnets and novel anti-reflux devices.
- How to read/man-uscript a HRM or pH study paper without getting fooled.

Cross-module "numbers that matter" (you'll drill these repeatedly)

- GERD/Lyon: AET >6% pathologic; <4% normal; >80 reflux episodes abnormal; MNBI low supports GERD; low PSPW index supports impaired clearance.
- Chicago v4.0: IRP high + aperistalsis = achalasia; DCI >8,000 = hypercontractile; DL <4.5 s = spasm; extensive IEM if ≥70% weak/failed.
- **EoE:** symptoms + ≥15 eos/hpf; EREFS scoring; dilation target diameters and risk limits.
- Barrett's: Prague C&M; dysplasia drives ablation; T1a endoscopic, T1b consider surgery/EUS-guided plan.
- Varices: vasoactives + antibiotics + EVL for acute; secondary prophylaxis EVL + NSBB.
- Caustic: timing of EGD, Zargar grade prognostics, when to avoid dilation acutely.

Practice & resources scaffold

- Trace bank: 30 HRM files, 20 pH-impedance reports, 10 FLIP traces (we'll interpret together).
- Image bank: canonical LA grades, EREFS examples, Barrett's with dysplasia patterns, strictures/rings, Zenker/Z-POEM views.
- Case sets:
 - Rapid triage (10), Refractory GERD (10), Dysphagia not-so-simple (12), EoE dilemmas (10),
 Achalasia choices (12), Emergencies (8), Cancer staging/palliation (8).
- One-pagers: Dysphagia algorithm; Reflux testing off/on meds; Achalasia treatment selection; EoE step-up/step-down; Caustic ingestion acute pathway; Variceal bleed bundle; Barrett's eradication pathway.

Suggested reading spine (pull as needed while we go)

- ACG/AGA/ASGE guidance on GERD, Barrett's, achalasia, EoE, foreign body/food impaction, caustic
 injury, and variceal bleeding.
- · Chicago Classification v4.0 (HRM).
- · Lyon Consensus for GERD diagnostics.
- ESGE/BSG complements for emergency endoscopy and Barrett's therapy.
- Key trials: POEM vs LHM, pneumatic dilation data, ablation trials in dysplastic Barrett's, dupilumab in EoE.

Schedule template (tight but humane)

4 weeks, ~45-60 minutes/day

- Week 1: Modules 1-4
- Week 2: 5-8
- Week 3: 9-13
- Week 4: 14-21 + comprehensive drills

Next up: Module 1 — Symptoms & triage. I'll open with a high-yield dysphagia algorithm, alarm features, "scope now vs test first," and the exact work-up sequences that minimize repeat procedures.

You said:

Next

ChatGPT said:

Request for GPT-5 Pro

Reasoned for 8m 35s

Module 1 — Symptoms & triage (the front door)

Fellowship-level, clinic-useful. We'll keep it algorithmic so your brain can run it in the hallway between consults

Learning objectives

By the end you can:

- 1. Sort oropharyngeal vs esophageal symptoms in <30 seconds.
- 2. Decide scope now vs. test next (and which test).
- 3. Handle time-critical esophageal problems without hemming and hawing.
- 4. Order the right biopsies the first time so you don't chase your tail later.

A. First split: oropharyngeal vs esophageal dysphagia

Clues for oropharyngeal (refer for VFSS + SLP/ENT): trouble **initiating** a swallow, nasal regurgitation, choking/cough **during** swallow, aspiration pneumonia.

Clues for esophageal: "food sticks lower down," symptoms **after** the swallow; solids±liquids pattern helps with **mechanical vs motility** thinking.

B. Scope now vs test next — the fast rules

- Esophageal dysphagia → EGD is first-line. Add biopsies (see EoE notes below). Barium is an adjunct when EGD is negative or unsafe first (e.g., high perforation concern). www.asge.org+1
- Alarm/complicated presentations (weight loss, bleeding, odynophagia, progressive symptoms, food impaction, suspected cancer) → expedited EGD (many are ED-level; see "time-critical" below). www.asge.org
- Typical GERD without alarms → trial PPI; objective reflux testing when needed (Lyon 2.0 thresholds below). Gut+1

C. Time-critical situations (what can't wait)

Emergent (preferably ≤2 h; at latest ≤6 h):

- Complete esophageal obstruction (drooling, can't handle secretions).
- Button battery in esophagus.
- Sharp-pointed object in esophagus. Esge

Urgent (≤24 h):

- Food bolus (if not completely obstructed).
- Other esophageal foreign bodies without complete obstruction.
- Large/long objects, magnets, or batteries beyond esophagus (often stomach) if not progressing. Esge Caustic ingestion:
- EGD within 12-24 h (safe to ~72 h). Avoid the "soft" phase 3 days-2 weeks because the wall is friable. PMC+1

Upper GI bleeding:

- Nonvariceal UGIB → endoscopy within 24 h after resuscitation. Darmzentrum Bern+1
- Suspected variceal bleeding → start vasoactives + antibiotics now; most societies advise endoscopy within ~12 h after resuscitation; very-early (<6 h) endoscopy may be harmful in some cohorts. Consider pre-emptive TIPS in high-risk (Child-Pugh C <14 or B with active bleeding). PMC+3Esge+3AASLD+3

D. The dysphagia algorithm (walkthrough)

Step 1 — Oropharyngeal?

If yes \rightarrow VFSS \pm FEES, neuro/ENT/SLP pathway. If no \rightarrow esophageal branch.

Step 2 — Esophageal dysphagia → EGD first.

• Treat as a therapeutic EGD: be ready to dilate benign strictures/rings and manage impactions—but biopsy smartly first when malignancy is possible. www.asge.org

Step 3 — Biopsy for EoE in anyone with esophageal symptoms (even if mucosa looks normal):

- At least 6 biopsies from ≥2 levels (proximal/mid and distal).
- Use **EREFS** to photo-document.
- For initial diagnosis, the guideline advises performing the index endoscopy off therapy (no PPI, no topical steroids, no elimination diet) to maximize sensitivity.
- Diagnostic rule: symptoms + ≥15 eos/hpf after excluding other causes. Medils

Step 4 — EGD unrevealing but symptoms persist? Choose the next test by symptom pattern.

- Solids + liquids or "sticking" that's inconsistent → HRM (Chicago v4.0); consider adjunct Timed Barium Esophagram (TBE) to document emptying/EGJ delay. PubMed+2Wiley Online Library+2
- ullet Heartburn/regurgitation refractory to PPI or atypical symptoms ullet ambulatory pH or pH-impedance (off meds when GERD unproven; on meds for refractory symptoms with proven GERD). Use Lyon 2.0: AET >6% (on ≥2 days) = GERD; AET <4% (all days) + negative symptom association ≈ not GERD. Supportive metrics (MNBI, PSPW) push interpretation over the goal line. Gut+1
- Suspect subtle mechanical lesion (rings/webs/anastomosis) despite normal EGD → add barium with tablet to unmask narrowings. Lippincott Journals

E. Test details you'll actually use

Timed Barium Esophagram (TBE)

• Standard protocol: rapidly ingest ~200 mL thin barium; upright films at 1, 2, and 5 minutes; optionally add a 13-mm barium tablet. Report column height/width and tablet passage. Great for achalasia/EGJOO baseline and post-therapy follow-up. PMC+1

HRM (Chicago v4.0 essentials)

- Upright and supine swallows, plus provocations (multiple rapid swallows, rapid drink challenge).
- Key thresholds you'll recall later: IRP elevated + aperistalsis → achalasia; DL <4.5 s = spasm; DCI >8,000 = hypercontractile; IEM needs ≥70% ineffective or ≥50% failed. PubMed+1

F. "Order set" & practical notes

- CBC, iron studies when chronicity/bleeding/weight loss is on the table.
- If food bolus, don't let "medical therapy" delay endoscopy; if complete obstruction, roll to the suite.
- If caustic, keep NPO: avoid neutralization/emetics: early EGD (12–24 h), PMC
- If EoE suspected, index EGD off therapy; on every EoE scope, use EREFS and quantify eos/hpf in the report. Medils

G. Pitfalls & board-style traps

- Normal-looking esophagus ≠ no EoE. Take 6+ biopsies from ≥2 levels. Medils
- Empiric large-bore dilation with a normal EGD is out; risk > benefit and dangerous in unsuspected EoE. www.asge.org
- Food bolus is a diagnosis + clue: plan a work-up for underlying EoE/stricture, not just a push and peace out. Esge
- "Very early" (<6 h) endoscopy for variceal bleed may worsen outcomes in some groups resuscitate, start drugs, then scope early but not reckless. PMC

H. 10-minute drill (mini-cases)

- 1. 52-year-old with progressive solids→liquids, 10-lb weight loss. Plan: EGD now (biopsy mass/stricture; stage if malignancy). If benign and tight, dilate cautiously after biopsies. www.asge.org
- 2. 25-year-old with food impaction, atopy, history of slow eating.

Plan: Emergent/urgent EGD (based on obstruction). Post-extraction, schedule index EGD off therapy with ≥6 biopsies across ≥2 levels and EREFS. <u>Esge+1</u>

- 70-year-old drooling, can't swallow saliva, x-ray shows button-battery at T2.
 Plan: Emergent EGD (≤2 h) with airway protection; treat like a caustic injury. Esge
- 4. Cirrhosis, hematemesis, tachycardic.

Plan: Resuscitate; start vasoactive + antibiotics; scope early (~12 h) for EVL once stable; apply pre-emptive TIPS criteria if high-risk. Esge+1

I. One-page cheat sheet (summary)

Esophageal dysphagia → EGD first (biopsy for EoE regardless of EGD appearance). If EGD normal → HRM ± TBE; do pH-impedance when GERD needs proving or refractory symptoms need adjudication (Lyon 2.0: AET >6% = GERD; <4% rules it out). Emergencies: complete obstruction/sharp/battery (≤6 h), other foreign bodies/food bolus (≤24 h), caustic (12–24 h), NVUGIB (≤24 h), variceal (≈12 h after resus). Esge+
7www.asge.org+7PubMed+7

Next up — **Module 2: Anatomy & physiology that change decisions** (EGJ morphology/hiatus mechanics, Hill grade, pressure topography). I'll map these features directly to choices you make later (reflux testing off vs on meds, anti-reflux surgery candidacy, and motility interpretation).

You said:

Next

ChatGPT said:

Request for GPT-5 Pro

Reasoned for 7m 3s

Module 2 — Anatomy & physiology that change decisions

We're zooming in on the anti-reflux barrier, hiatal mechanics, and pressure signatures that steer real-world choices (testing, dilation, POEM vs fundoplication vs MSA, and when TIF is a non-starter).

Learning objectives

By the end you can:

- 1. Describe the **anti-reflux barrier** (LES + crural diaphragm + angle of His + flap valve) and how each piece fails.
- 2. Identify hiatal hernia types and measure them correctly on EGD, barium, and HRM.
- 3. Read EGJ morphology on HRM (types I–III) and understand EGJ-CI and inspiratory augmentation.
- 4. Use EndoFLIP to judge EGJ distensibility (and avoid over-interpreting noisy numbers).
- Translate anatomy → decisions (who needs pH-impedance, who's a surgical candidate, who should not get TIF/MSA yet, who needs motility evaluation first).

A. The anti-reflux barrier: parts that matter clinically

- LES (smooth muscle): tonic high-pressure zone with swallow-induced relaxation and pesky TLESRs
 (transient LES relaxations) driving physiologic reflux after meals.
- **Crural diaphragm (CD):** skeletal muscle sling at the hiatus; acts like an **external sphincter** that augments LES **with inspiration** (look for inspiratory "pinch" on HRM).
- Gastroesophageal flap valve (GEFV): the mucosal fold just below the EGJ—graded on retroflexion (Hill I–IV). Grades III–IV signal barrier incompetence.
- Angle of His & phrenoesophageal ligament: geometry and tethering; when stretched or torn (chronic herniation), the acid pocket rides cephalad and reflux flourishes.

Clinical take: Loss of CD-LES alignment (hiatal hernia) and a poor GEFV (Hill III–IV) are the anatomic duet most predictive of objective reflux and poor response to pure "LES-only" solutions.

B. Hiatal hernia—naming, finding, measuring

- Types: I (sliding), II (pure paraesophageal), III (mixed), IV (plus other organs).
- EGD measurement: distance between diaphragmatic pinch and proximal gastric folds; ≥2 cm is typically considered a hernia. Avoid measuring to the Z-line if there's Barrett's—use the folds.
- Barium: documents axial separation and reducibility; add a barium tablet when subtle narrowing or
 post-fundoplication anatomy is in doubt.
- HRM EGJ morphology:
 - o **Type I:** LES and CD pressure peaks **overlap** (single peak).
 - Type II: 1-2 cm separation (double peak).
 - Type III: ≥2 cm separation—physiologic correlate of a hiatal hernia.
 Greater separation correlates with worse reflux and weaker CD augmentation.

Decision ripples:

- Large hernia → favors surgical repair + fundoplication; TIF is inappropriate if the hiatus is big.
- Small/reducible hernia → MSA/TIF may be options only after objective GERD is confirmed and motility is adequate.

C. HRM: what to read beyond the IRP

• EGJ morphology (above) tells you about anatomic alignment.

- Inspiratory augmentation: a healthy CD raises EGJ pressure on inspiration; a weak or displaced CD attenuates this.
- EGJ-CI (EGJ contractile integral): summarizes EGJ vigor over time (similar units to DCI). Low values support barrier weakness, but platform- and posture-specific norms vary—treat EGJ-CI as supportive, not definitive.
- **Esophageal body:** remember **DCI** (contractile vigor), **DL** (latency), and patterns like IEM or spasm that will influence anti-reflux procedure selection (weak peristalsis + big hernia → tailor wrap, maybe partial).

D. EndoFLIP (FLIP panometry) at the EGJ

- What it measures: Cross-sectional area (CSA) along the esophagus during graded balloon distension and intraballoon pressure → Distensibility Index (DI = CSA/pressure) at the EGJ.
- · How to use it:
 - Low DI at 50–60 mL fill suggests EGJ outflow obstruction (classically achalasia).
 - Post-therapy targets (after POEM/LHM/dilation): DI moving into the "clearly not-tight" range supports adequate myotomy; a persistently low DI argues for residual obstruction.
 - Caveats: DI is load- and technique-dependent; always interpret with the tracing (is the waist opening with volume?) and in the context of HRM + symptoms.
- Panometry patterns: normal repetitive antegrade contractions (RACs) vs absent or disordered
 pressurization. Treat patterns as supportive physiology, not standalone diagnoses.
 Quick pearl: EGJ types I–III are an HRM concept (LES–CD separation), not a FLIP concept. Keep those
 wires uncrossed.

E. Hill grade—retroflexed truth serum

- Grade I: tight, robust fold hugging the scope—great barrier.
- Grade II: opens with inspiration but coapts—often okay.
- Grade III: minimal valve—often correlates with pathologic reflux.
- Grade IV: wide-open gape; you can see the hernia—surgical territory if symptomatic with objective GERD.

F. Acid exposure and clearance physics (why posture and saliva matter)

- Acid pocket sits just below the EGJ after meals; hernias pull it above the diaphragm → easier reflux.
- Clearance depends on peristalsis + gravity + saliva bicarbonate. Supine time, hyposalivation
 (anticholinergics, radiation), and motility disorders tilt the table toward mucosal injury even with
 modest AET.

G. Numbers that matter (use lab-specific norms; these are pragmatic anchors)

- Hernia on EGD: ≥2 cm separation (diaphragmatic pinch → gastric folds).
- HRM EGJ morphology: Type III = ≥2 cm LES-CD separation.
- HRM body metrics: DCI >8,000 = hypercontractile; DL <4.5 s = spasm; IEM if ≥70% ineffective or ≥ 50% failed swallows.
- EndoFLIP EGJ DI (50–60 mL): clearly low DI supports obstruction; higher DI post-myotomy suggests adequate disruption of the EGJ. (Exact cutoffs vary—treat DI as graded evidence rather than binary.)

H. How this anatomy changes your next moves

- Reflux work-up: Hill III–IV, HRM EGJ Type II–III, or large hernia raise pretest probability pH-impedance off therapy is more likely to be positive and impactful.
- · Procedure candidacy:
 - Big hernia / Hill IV → laparoscopic repair + fundoplication; expect better outcomes than endoluminal approaches.
 - Borderline motility (IEM, absent contractility) → partial wrap (Toupet) over a full Nissen; be cautious with MSA.
 - \circ Achalasia physiology (HRM \pm FLIP) \to POEM or LHM; plan for reflux surveillance/management after myotomy.
- "Refractory GERD" with normal anatomy → step back: confirm GERD (Lyon framework), review PPI timing, consider hypersensitivity/functional overlay before cutting or implanting anything.

I. Pitfalls & board-style traps

- Calling a hernia from the Z-line instead of the gastric folds (Barrett's shifts the Z-line; you'll overcall hernias).
- Treating low EGJ-CI or borderline DI as destiny. Neither is a binary truth. Use convergent evidence.
- Proceeding to TIF with a moderate/large hernia or poor GEFV—it will fail the physics test.
- Ignoring inspiratory augmentation on HRM; a weak CD can explain symptoms even if LES pressure

J. 10-minute drill (mini-cases)

- 1. EGD: Hill IV, 3 cm hernia; HRM: EGJ Type III; body peristalsis normal.
 - **Plan:** Objective GERD test if not already proven → **hernia repair + fundoplication** if positive. TIF/MSA: **no** with this hernia.
- 2. HRM: Normal IRP, EGJ Type II, IEM (≥70% ineffective). FLIP: borderline DI.
 - **Plan:** If reflux symptoms, **pH-impedance off therapy** to prove GERD. If confirmed and surgery considered, **partial wrap** preferred; avoid aggressive wraps/MSA.
- Post-POEM: Symptoms better but regurgitation nightly. FLIP: DI clearly higher than pre-op; pH study: AET 9%.

Plan: This is the expected trade-off—manage GERD (optimize PPI; consider hernia assessment; anti-reflux procedure only if anatomy supports it).

One-page takeaway (clipboard version)

- Measure hernia from pinch → folds, not to the Z-line.
- HRM EGJ Type III = hernia physiology; weak inspiratory pinch = weak CD.
- Hill III-IV and large hernias drive you toward surgery when GERD is proven.
- FLIP DI is contextual; pair with HRM + symptoms.
- Anatomy and physiology are gatekeepers for Module 4 decisions (who to scope, test, dilate, cut, wrap, or magnetize).

Next up: **Module 3 — Diagnostic toolkit & interpretation bootcamp.** We'll build an interpretation ladder for EGD photo-documentation (LA/Prague/EREFS), barium protocols (timed swallow + tablet), **HRM (Chicago v4.0)** decision tree, **pH-impedance** using the Lyon framework, and **EndoFLIP** go/no-go thresholds—plus 10 rapid trace reads.

You said:

Next

ChatGPT said:

Request for GPT-5 Pro

Reasoned for 8m 13s

Module 3 — Diagnostic toolkit & interpretation bootcamp

This is the nuts-and-bolts module: how to capture the right images, order the right studies, and read the squiggly lines without hallucinating pathology.

Learning objectives

After this module you can:

- 1. Produce an EGD report that stands up in tumor board (LA, Prague, EREFS + biopsy strategy).
- Choose barium vs HRM vs pH-impedance vs FLIP wisely—and interpret them using current consensus thresholds.
- 3. Know when EUS/CT/PET change management (and when they won't).

1) EGD: image, score, biopsy, repeat

Photo-documentation (minimum set)

Document proximal & distal esophagus, Z-line, retroflexed EGJ/hiatus (Hill grade), any lesions; societies increasingly expect systematic photo sets as a quality metric. <u>Esse+1</u>

Scoring systems you must actually write in the report

- LA classification for erosive esophagitis (grades A–D). It's the lingua franca and validated. PubMed
- Prague C & M for Barrett's extent (circumference & maximal). High interobserver reliability; use gastric folds as the distal landmark. <u>PubMed+1</u>
- EREFS in suspected/known EoE to standardize endoscopic features and follow response. PMC+1

Biopsy protocols that prevent regret

- EoE work-up: take ≥6 biopsies from ≥2 esophageal levels (distal and proximal/mid), regardless of mucosal appearance. Current guidelines explicitly recommend systematic endoscopic scoring (EREFS) and multi-level sampling. gastroenterology.acponline.org+1
- Barrett's surveillance: Seattle protocol—four-quadrant biopsies every 2 cm without dysplasia and 1 cm with prior dysplasia, plus targeted biopsies/EMR for any visible lesions. PMC+1

Two frequent EGD pitfalls

- Measuring hernia to the Z-line instead of the proximal gastric folds (overcalls hernias in Barrett's). bsg.org.uk
- Skipping EoE biopsies when mucosa looks "normal." Don't. (See above.) <u>Gut</u>

2) Barium studies: when a cup of chalk beats a thousand words

Timed Barium Esophagram (TBE) protocol

Rapidly ingest ~150–200 mL thin barium upright; obtain frontal films at 1, 2, and 5 minutes; report column height & width and 13-mm tablet passage when available. It's simple, reproducible, and excellent for achalasia/EGJ obstruction baseline and post-therapy follow-up. AJR Online+2]nmjournal.org+2

....

use-cases

- Suspected achalasia/EGJOO (with HRM and/or FLIP).
- · Post-POEM/LHM/dilation to document emptying. PMC

3) High-Resolution Manometry (HRM): Chicago v4.0 without tears

Protocol upgrades that matter

Chicago **v4.0** expects **supine** and **upright** swallows and **provocation** (multiple rapid swallows, rapid drink challenge) to avoid over-calling and to reveal clinically relevant physiology. **PMC**

Core metrics-think "IRP, DCI, DL, EGJ morphology"

- IRP (relaxation); DCI (contractile vigor); DL (latency).
- **EGJ morphology** (LES–crural diaphragm separation): Type I (overlap), II (1–2 cm), III (≥2 cm → hernia physiology). PubMed

Diagnostic guardrails (v4.0)

- Elevated IRP + aperistalsis → achalasia (type I–III by pattern).
- DCI >8.000 = hypercontractile: DL <4.5 s = spasm.
- IEM requires ≥70% ineffective or ≥50% failed swallows (stricter than prior versions). PubMed+1

When HRM is borderline (e.g., "possible EGJOO"), add TBE (with tablet) and/or FLIP before labeling disease. PMC

4) Ambulatory reflux testing: Lyon 2.0 decoding

Choosing the test & posture

- Unproven GERD or pre-procedure: test off PPI (wireless 48–96 h improves yield; many centers aim for 96 h). Lippincott Journals+2CGH Journal+2
- Proven GERD with persistent symptoms: pH-impedance on PPI adjudicates mechanism (breakthrough acid vs non-acid, hypersensitivity). Gastro Journal

Lyon 2.0 thresholds you should memorize

- AET >6% (on ≥1 day; ideally ≥2 days wireless) = conclusive GERD; AET <4% on all days with negative symptom links argues strongly against GERD.
- Total reflux episodes >80/day (definitive) vs <40/day (normal).
- MNBI low and PSPW reduced = supportive evidence when AET is inconclusive. <u>Gut</u>
 Regional nuance: some Asian data suggest a slightly lower AET abnormal cutoff (~>4%) may fit local
 populations—know your lab's norms and patient population. Treat as a nuance, not a global rule.
 gutnliver.org

5) EndoFLIP (FLIP panometry): distensibility with context

What to read

- EGJ-DI (mm²/mmHg) at 50-60 mL fill + the contractile response pattern.
- "Normal-ish" ranges in healthy cohorts often ≥2.8–3.0; interpret with the tracing and in combination with HRM/TBE. PMC+1

Patterns that help

- RACs ("rule-of-6s") = normal secondary peristalsis signature.
- Low DI + absent opening under distension supports EGJ obstruction (achalasia/EGJOO). PMC

Caveat emptor

DI is technique- and load-dependent; avoid binary thinking—use FLIP as **supportive physiology** alongside HRM/TBE. PMC

6) EUS/CT/PET for esophageal neoplasia: who, when, why

- EUS improves T staging (wall layers) and samples suspicious regional nodes by FNA; it refines
 decisions about endoscopic therapy (T1a) vs surgery/neoadjuvant approaches (≥T1b/locally
 advanced). PMC
- **CT chest/abdomen** and **FDG-PET/CT** stage **regional/distant disease**; PET/CT is best for metastases detection, less so for precise **T** stage. Follow an NCCN-style sequence to avoid waste. NCCN+1

7) Numbers that matter (clipboard edition)

- LA: A–D for erosive esophagitis severity. PubMed
- Prague: report C (circumference) and M (maximal). Use gastric folds, not Z-line. PubMed
- Seattle protocol: 4-quadrant every 2 cm (NDBE) or 1 cm (prior dysplasia). PMC
- EoE biopsy: ≥6 from ≥2 levels; diagnose with symptoms + ≥15 eos/hpf (after excluding other causes); track EREFS. gastroenterology.acponline.org
- TBE: 1–2–5 min films; consider 13-mm tablet; report height/width. AJR Online
- HRM (v4.0): IRP high + aperistalsis = achalasia; DCI >8,000 hypercontractile; DL <4.5 s spasm; IEM stricter (≥70% ineffective or ≥50% failed). PubMed
- Lyon 2.0: AET >6% conclusive; <4% all days against GERD; >80 reflux episodes/day abnormal;
 MNBI/PSPW supportive. Gut
- FLIP: EGJ-DI ~≥2.8–3.0 at 50–60 mL + RACs pattern supports "not obstructed." PMC

8) Pitfalls & board-style traps

- Calling a hiatal hernia from the Z-line (not the gastric folds) → misclassification of Barrett's anatomy. bsg.org.uk
- Labeling EGJOO on HRM alone; always corroborate with TBE (±tablet) or FLIP to avoid false positives. PMC
- Declaring "non-acid reflux disease" from a one-day catheter test with AET 4–6% and 50–70 reflux episodes; Lyon 2.0 wants multi-metric convergence (MNBI/PSPW, episodes >80) or longer monitoring. Gut
- Skipping EREFS and systematic biopsies in EoE → you'll miss the diagnosis or can't document response. gastroenterology.acponline.org

9) 10-minute drill (interpretation reps)

- Report excerpt: LA B esophagitis, 2-cm hernia measured from Z-line to pinch; "no Barrett's."
 Fix: Re-measure pinch → gastric folds, not to Z-line; if folds are distal to Z-line (tongues), use Prague C&M and document Hill grade. PubMed+1
- HRM: Upright IRP borderline, 40% failed swallows, 30% weak; supine provocation normal.
 Call: Not IEM by v4.0 (thresholds unmet). Consider reflux testing if symptoms fit; don't over-diagnose. PubMed
- FLIP (60 mL): EGJ-DI 1.8 with absent opening; panometry lacks RACs. TBE: 5-min barium column 12 cm, tablet retained.
 - Synthesis: Physiologic EGJ obstruction \rightarrow treat as achalasia/EGJOO spectrum after clinic correlation. PMC+1
- Wireless pH (96 h) off PPI: Day-to-day variance with AET 3.1%, 3.6%, 7.8%, 5.2%; total reflux episodes 92/day; MNBI low.
 - Call: Meets Lyon 2.0 conclusive GERD (AET >6% on a day + high episodes + low MNBI). Gut
- Barrett's 4 cm, no visible lesions: Random 2-jar biopsies taken.
 Fix: Seattle protocol with 4-quadrant sampling every 2 cm (or 1 cm if prior dysplasia), separate jars for targets. PMC

10) One-page takeaway (you can paste into your report template)

- EGD: LA for esophagitis; Prague for BE; EREFS for EoE; biopsies: EoE ≥6 from ≥2 levels; Seattle protocol for BE. PMC+2PubMed+2
- Barium: TBE 1–2–5 min + 13-mm tablet → report column metrics; use for achalasia/EGJOO and post-therapy. AJR Online
- HRM (v4.0): dual posture + provocations; use IRP/DCI/DL and EGJ morphology; confirm EGJOO with TBE/FLIP. PMC+1
- Reflux testing (Lyon 2.0): AET >6% conclusive; <4% all days argues against; >80 reflux/day, low
 MNBI, low PSPW support GERD when AET is borderline; extend monitoring (48–96 h) when in doubt.
 Gut+1
- FLIP: EGJ-DI ~≥2.8-3.0 at 50-60 mL + RACs → "not tight"; low DI + absent opening = obstruction (context matters) PMC
- Cancer staging: EUS for T/N (with FNA); CT/PET for distant disease; follow NCCN flow. NCCN+1

Next up — Module 4: GERD & the reflux spectrum. We'll operationalize PPI optimization, when to test off vs on therapy, how to use MNBI/PSPW without overfitting, and walk through candidacy for TIF/MSA/fundoplication with a case-based algorithm.

You said:

Next

ChatGPT said:

Request for GPT-5 Pro

Reasoned for 8m 35s

Module 4 — GERD & the reflux spectrum (clinic-first, boards-proof)

We'll turn reflux chaos into a clean decision tree: optimize acid control, prove disease when it matters, and match the right patient to the right procedure—without getting fooled by mimics.

Learning objectives

By the end you can:

- 1. Optimize acid suppression (how, when, and with what—PPIs vs P-CABs—and what not to do).
- Decide trial of PPI vs objective testing and interpret results using Lyon 2.0 (AET, reflux episodes, MNBI/PSPW). PMC+1
- Run a refractory GERD algorithm (on-therapy pH-impedance; distinguish non-acid reflux, hypersensitivity, rumination, and SGB). PMC+1
- Select candidates for TIF, MSA (LINX), or fundoplication and know when hernia repair or RYGB trumps endoluminal tricks. sages.org

A First fork. PPI trial or test first?

- Typical symptoms, no alarms: it's reasonable to start with an 8-week once-daily PPI (taken correctly; see below). If symptoms resolve, step down or stop when able. PMC
- Unclear diagnosis or pre-procedure decisions: do ambulatory reflux monitoring off therapy (wireless 48–96 h preferred). Lyon 2.0: AET > 6% = conclusive GERD; AET < 4% on all days argues against. >80 reflux episodes/day supports GERD; MNBI/PSPW tip borderline cases. PubMed
- Isolated extra-esophageal symptoms (chronic cough, laryngeal complaints): test first rather than empiric double-dose PPIs. PMC+1

B. Medication mastery (what actually changes outcomes) PPIs (proton-pump inhibitors)

- Timing matters: take 30–60 min before a meal, not at bedtime. If BID, dose before breakfast and dinner. PMC
- Optimization steps: adherence → timing → BID trial → consider switch PPI (class effect, but some patients do better with another agent). Avoid routine add-ons if nonresponse; escalate to testing.
 PMC

P-CABs (potassium-competitive acid blockers) — vonoprazan

 US-approved for healing and maintenance of erosive esophagitis (EE): 20 mg daily x8 weeks for healing; then 10 mg daily (up to 6 months) for maintenance per label. Useful when rapid, potent suppression is desired or PPI adherence/timing is an issue. <u>FDA Access Data</u>

H2-receptor antagonists (H2RAs)

 Can blunt nocturnal acid the first week, but tachyphylaxis typically emerges within days to weeks; not recommended as routine chronic add-on to PPIs. Consider a short targeted course for tough nocturnal symptoms while you complete testing and fix PPI timing. PMC+1

Alginates (raft therapy)

 Create a post-prandial "raft" that displaces the acid pocket; helpful for meal-related heartburn/regurgitation and as an add-on in refractory symptoms with proven GERD. <u>CGH Journal+1</u>

Lifestyle with signal

 Weight loss (if overweight/obese), avoid late meals (≥2–3 h before bed), head-of-bed elevation for nocturnal symptoms; advise stop smoking. These carry modest but real benefit. PMC

C. When symptoms persist: reframing "refractory GERD"

Step 1 — Recheck the basics.

Confirm adherence/timing, stop culprits (tobacco, late meals), address constipation/straining. Step 2 — Objective testing.

- GERD not yet proven: pH (or pH-impedance) off PPI (ideally multi-day wireless). Use Lyon 2.0 thresholds. PubMed
- Proven GERD but symptoms persist on BID PPI: pH-impedance on PPI to classify: acid breakthrough, non-acid reflux, or not reflux (hypersensitivity/functional). PMC

Step 3 — Treat mechanism, not vibes.

- True acid breakthrough: reinforce timing; consider switch to potent agent (e.g., vonoprazan); very short course bedtime H2RA if needed, recognizing tachyphylaxis. FDA Access Data+1
- Non-acid reflux with positive association: escalate anti-reflux strategies (see Section D). PMC
- Reflux hypersensitivity (normal AET, positive association): consider neuromodulators/behavioral therapy, not surgery. Functional heartburn (normal AET, negative association): avoid anti-reflux procedures; use neuromodulators/brain-gut therapies. Gastro Journal
- Rumination/Supragastric belching: teach diaphragmatic breathing and behavior therapy; don't
 escalate acid suppression (covered in Module 11).

D. Procedures: who, what, and when

Pre-procedure rulebook

Everyone headed to intervention needs **EGD**, **HRM**, and **objective reflux testing** (off therapy) unless EE LA C/D or long-segment Barrett's has already proven GERD. Large hernias and poor valves bias toward surgical repair. PMC

Fundoplication (complete or partial) & hiatal hernia repair

Mainstay for proven GERD, especially severe EE (LA C/D) or large hiatal hernia. Partial wraps often
reduce dysphagia/bloating risk with similar reflux control in many cohorts. PMC+1

Magnetic sphincter augmentation (MSA, LINX)

Appropriate alternative to fundoplication in proven GERD with small or repaired hernia and
adequate motility; know about MRI restrictions which vary by device vintage—patients implanted
before 2015 may be limited to ≤0.7 T; later models are MR-conditional (often 1.5 T)—confirm device
card. sages.org+2MRI Safety+2

Transoral incisionless fundoplication (TIF 2.0)

Can help selected patients with proven GERD, small hiatal hernia (≤2 cm) and acceptable valve
anatomy: outcomes inferior to surgical fundoplication but superior to PPIs alone in some trials. Not

for big hernias unless the hernia is repaired first and reduced to ≤2 cm. sages.org+2PMC+2

Obesity interface

 With BMI > 35, RYGB (gastric bypass) frequently outperforms fundoplication for reflux control and weight-related comorbidity; in very high BMI (e.g., >50), RYGB is often favored if the patient is a candidate. sages.org

E. Special contexts you'll be asked about

- LA C/D esophagitis: maintain patients indefinitely on PPIs or offer anti-reflux surgery. Re-scope after healing to assess for Barrett's. PMC
- Pregnancy: symptom-based diagnosis; lifestyle → antacids/alginate → H2RA → PPI step-up if needed; sucralfate is safe. PMC

F. Numbers that matter (pin these to your cortex)

- Lyon 2.0: AET > 6% = GERD; AET < 4% all days argues against; >80 total reflux/day abnormal;
 MNBI/PSPW are supportive metrics. <u>PubMed</u>
- PPI use: 30–60 min pre-meal (BID = breakfast & dinner). PMC
- Vonoprazan (label): 20 mg daily x8 wk to heal EE; 10 mg daily up to 6 mo to maintain. FDA Access
 Data
- H2RA add-on: transient benefit for nocturnal symptoms; tachyphylaxis within days—weeks is common. dig.pharmacy.uic.edu
- TIF candidacy: hiatal hernia ≤2 cm (or repaired to ≤2 cm) and proven GERD. PMC

G. Pitfalls & board-style traps

- Treating "refractory GERD" without proving GERD: test off therapy if unproven; on therapy if proven GERD but persistent symptoms. PMC
- Using H2RAs long-term at bedtime for "NAB"—benefit fades; don't paper over poor PPI timing or unproven GERD. dig.pharmacy.uic.edu
- Offering TIF with a hernia >2 cm or a terrible flap valve (Hill III–IV). Physics wins. PMC
- Operating on functional heartburn or unproven extra-esophageal reflux—procedures won't help.
 Gastro Journal

H. 10-minute drill (mini-cases)

1. 52-year-old with classic heartburn/regurgitation, BMI 33, no alarms.

You start omeprazole 20 mg AM; minimal response.

Fix: Teach **30–60 min pre-meal**, step up to **BID** before breakfast/dinner. If still symptomatic, **off-therapy wireless pH (48–96 h)**. If AET > 6% and 3 cm hernia, discuss **hernia repair + fundoplication**. PMC+1

- 2. 40-year-old singer with throat clearing/hoarseness, no typical heartburn.
 - Plan: Test first (off PPIs) rather than empiric double-dose PPI. Only treat GERD if objective evidence emerges. PMC
- 3. PPI-refractory regurgitation on correct BID dosing; EGD: Hill III, 2 cm hernia.
 - pH-impedance on PPI: positive association with non-acid events.
 - Plan: Proven reflux mechanism + anatomy → consider TIF if anatomy suitable (hernia ≤2 cm), otherwise surgery/MSA after full work-up. PMC+1
- 28-year-old with daily chest burning despite maximal PPIs; off-therapy pH: AET 2.2%, negative symptom association; HRM normal.
 - Diagnosis: Functional heartburn.
 - Plan: Neuromodulators/brain-gut therapy; avoid anti-reflux procedures. Gastro Journal
- 5. 60-year-old with EE (LA D) on index EGD.
 - Plan: High-dose PPI to heal → repeat EGD to confirm healing/rule out Barrett's; then indefinite PPI or surgery depending on anatomy/preferences. PMC

One-page takeaway (clipboard)

- Prove GERD when stakes are high (procedures, refractory, extra-esophageal). Use Lyon 2.0 thresholds and supportive impedance metrics wisely. PubMed
- Fix timing before calling PPIs a failure; consider vonoprazan for erosive disease needing fast, potent suppression. <u>PMC+1</u>
- Test on-therapy only when GERD is already proven and symptoms persist. PMC
- Pick the procedure to the physics: big hernia → repair + wrap; small/repaired hernia → MSA or partial/complete wrap; TIF only for ≤2 cm hernia and proven GERD. sages.org+1
- Don't operate on functional heartburn. Gastro Journal

Next up — **Module 5: Barrett's esophagus & early neoplasia.** We'll lock down risk stratification, biopsy protocols (Seattle), surveillance intervals, and endoscopic eradication therapy (EMR/ESD + RFA/cryotherapy) with post-ablation surveillance that doesn't miss recurrences. **You said:**

Next ChatGPT said: Request for GPT-5 Pro Reasoned for 9m 28s

Module 5 — Barrett's esophagus & early neoplasia (clinic-ready, tumor-board tough)

We'll pin down what *is* and *isn't* Barrett's, how to surveil smartly, and how to move from forceps to curative endoscopic therapy without getting lost in the forest of acronyms.

Learning objectives

By the end you can:

- Apply diagnostic thresholds (≥1 cm + intestinal metaplasia) and avoid the "irregular Z-line trap." Gi
 Board Review
- Set surveillance intervals by segment length (3 vs 5 years) and by histology (IND/LGD), and know when to stop. Gi Board Review+1
- Run a dysplasia workflow: confirm pathology, optimize acid, repeat EGD, then decide EET vs surveillance. Gi Board Review+1
- Execute endoscopic eradication therapy (EET) correctly (ER first for visible lesions → ablation) and know where EMR vs ESD fits. Gi Board Review+2Gi Board Review+2
- 5. Plan post-ablation surveillance (CEIM) without oversampling the whole esophagus. Gi Board Review

A. What counts as Barrett's (and what doesn't)

- Definition (US/ACG): columnar mucosa ≥1 cm in the tubular esophagus with intestinal metaplasia (IM). Don't biopsy a normal or irregular Z-line <1 cm if no visible lesion—progression risk is extremely low and labeling harms patients. Use Prague C&M to document extent. Gi Board Review
- Quality during index/surveillance EGD: high-definition white light and chromoendoscopy; systematic biopsy protocol (Seattle). ESGE also sets quality bars: ≥1 minute of inspection per cm of BE, photodocument landmarks and one picture per cm; biopsy visible lesions first, then random 4-quadrant biopsies. Gi Board Review+1

B. Surveillance that matches risk

Length-stratified (ACG 2022):

- NDBE <3 cm: EGD every 5 years.
- NDBE ≥3 cm: EGD every 3 years.

These recs reflect lower annual progression in short-segment BE and higher risk with increasing length. <u>Gi Board Review</u>

Indefinite for dysplasia (IND):

- Confirm by expert GI pathologist, intensify acid suppression (often BID PPI), repeat EGD ~6 months.
- If still IND → annual EGD; if downgraded to NDBE or upgraded to LGD → follow those pathways. Gi
 <u>Board Review</u>

ESGE perspective (useful cross-check/Europe):

BE 1-<3 cm: 5 years; 3-<10 cm: 3 years; ≥10 cm: follow at an expert center. Also advises no biopsies/surveillance for <1 cm irregular Z-line. bsg.org.uk

When to stop: stop when a patient is **no longer fit** for endoscopy or could not tolerate curative therapy; ESGE suggests age/comorbidity-guided discontinuation. bsg.org.uk

C. Dysplasia workflow (don't skip steps)

- Confirm dysplasia with a second expert GI pathologist—LGD and IND are notoriously discordant. Gi
 Board Review
- Optimize acid (adherence/timing; many use BID PPI during re-evaluation), then re-scope with high-def + virtual chromo. Gi Board Review
- 3. If LGD is confirmed:
 - o Preferred (AGA 2024): EET rather than surveillance (conditional).
 - Reasonable alternative: surveillance if patient values avoidance of procedure-related harms. If surveilling: 6 mo → 12 mo → annually while LGD persists; use Seattle 4-quadrants every 1 cm in LGD surveillance. American Gastroenterological Association+1
- If HGD or intramucosal cancer (T1a/IMC): EET is recommended over esophagectomy in most cases.
 Gi Board Review

D. Endoscopic eradication therapy (EET) — how to do it right

Principle: Resect first, then ablate. Any visible/nodular lesion → endoscopic resection (ER) for staging + therapy; then ablate the flat residual Barrett's (most commonly RFA; cryo is reasonable in nonresponders/selected scenarios). Treat in high-volume centers. Gi Board Review

Seattle protocol refresher for surveillance biopsies: 4-quadrants ≤2 cm throughout BE; if prior dysplasia, use 1 cm spacing. Gi Board Review

EUS/CT before EET? Routine **EUS is** *not* **recommended** to distinguish mucosal vs submucosal invasion in early EAC or dysplasia; it's modest for T-staging and should **not delay ER** of visible lesions. EUS becomes relevant once **T1b** (submucosal) or suspicious nodes enter the chat. <u>Gi Board Review</u>

EIVIK VS ESD (Where each shines):

- EMR (multiband/cap) is first-line for most Barrett's lesions, including many nodules ≤20 mm; it's
 efficient and safe. Gi Board Review
- ESD enables en bloc resection (larger lesions, suspected submucosal invasion, post-ablation scar). It
 has higher RO rates at the cost of more complexity and adverse events; Western guidance reserves
 ESD for selected scenarios. www.asge.org

E. Early cancer (how far can endoscopy go?)

- HGD & T1a (intramucosal) EAC: endoscopic therapy achieves excellent long-term outcomes with very low nodal risk; EET is recommended. Gi Board Review
- T1b (submucosal) EAC: nodal risk rises (≈20–30% for deeper invasion). Some low-risk sm1 cases (<500 μm, well/moderately differentiated, no LVI) may be considered for en bloc resection in expert centers, but many patients remain surgical candidates per oncologic guidelines. Individualize with multidisciplinary staging. Gi Board Review+1

F. Post-ablation (CEIM) surveillance—tight enough, not over-tight

After successful EET with CEIM, ACG tailors surveillance to baseline histology:

- Prior LGD: endoscopy at 1 yr, 3 yr, then every 2 yr.
- Prior HGD/IMC: 3 mo → 6 mo → 12 mo → yearly.
 Biopsy GEJ (separate jar) and the distal 2–3 cm of neosquamous epithelium; routine sampling above that adds little. Gi Board Review

(ESGE proposes finite schedules up to year 10 for HGD/EAC and up to year 5 for LGD, then considers stopping—regionally variable.) <u>bsg.org.uk</u>

G. Medical therapy & chemoprevention (what helps, what doesn't)

- PPI: recommend at least once-daily PPI for all BE patients without contraindication (observational data suggest reduced progression). Gi Board Review
- Aspirin/NSAIDs: AspECT hints at benefit, but guidelines do not recommend routine ASA solely for BE chemoprevention; use for cardiovascular indications. Gi Board Review
- Antireflux surgery as cancer prevention: not recommended as an antineoplastic measure. Choose surgery for reflux control/anatomy, not to prevent EAC. <u>Gi Board Review</u>

H. Numbers worth memorizing

- Diagnosis: ≥1 cm + IM; do not biopsy <1 cm irregular Z-line without a lesion. Gi Board Review
- Surveillance (NDBE): <3 cm → 5 yr; ≥3 cm → 3 yr. Gi Board Review
- IND: confirm; BID PPI; repeat at ~6 mo; persistent IND → annual. Gi Board Review
- LGD: EET preferred (conditional); if surveilling → 6 mo, 12 mo, then yearly; Seattle 1 cm sampling for LGD. <u>American Gastroenterological Association+1</u>
- EET sequence: ER any visible lesion → RFA (±cryo) of residual Barrett's; treat at high-volume centers. Gi Board Review
- Post-CEIM: (LGD) 1 yr, 3 yr, then q2y; (HGD/IMC) 3, 6, 12 mo, then yearly; sample GEJ + distal 2–3 cm only. Gi Board Review

I. Pitfalls & board-style traps

- Calling <1 cm irregular Z-line "Barrett's" and dragging the patient into lifelong surveillance. Don't. <u>Gi</u> Board Review
- EUS before ER for a clearly visible early lesion—adds delay without reliable T staging precision; resect first. Gi Board Review
- "Flat HGD → straight to ablation" without resecting subtle nodularity—you'll miss depth and margins. ER first. Gi Board Review
- Undersampling long segments—Seattle protocol adherence drops as length rises. Audit your sampling. Gi Board Review
- Operating on low-risk T1a lesions that were resectable endoscopically, or endoscopically managing
 clearly high-risk T1b disease outside an expert MDT. Mind the nodal biology. Gi Board Review+1

J. 10-minute drill (mini-cases)

- Irregular Z-line 5 mm, no visible lesion; forceps biopsies show IM.
 Plan: Do not label BE; no surveillance; educate and move on. <u>Gi Board Review</u>
- 2. NDBE 2 cm; good baseline exam & biopsies.
 - Interval: 5 years. Gi Board Review
- Confirmed LGD; patient prefers to avoid procedures.
 Option: Surveillance 6 mo → 12 mo → yearly using Seattle 1 cm; discuss trade-offs vs EET. Gi Board Review+1
- A Nadula in BE: bionsies suggest UCD

- 4. Nouvie III DE; Diopsies suggest nov.
 - Move: ER the lesion first (multiband EMR). If IMC on pathology, ablate residual BE. Gi Board Review
- T1b (sm1, 300 μm), well-diff, no LVI on en bloc ESD; cross-sectional staging negative.
 Strategy: Discuss endoscopic vs surgical management in expert MDT; carefully selected low-risk sm1 can be managed endoscopically with close follow-up. PMC

K. One-page clipboard (for your template)

- Diagnose: ≥1 cm + IM; Prague C&M; avoid <1 cm Z-line biopsies. Gi Board Review
- Surveil NDBE: <3 cm → q5y; ≥3 cm → q3y; IND → BID PPI, 6 mo repeat; persistent IND → annual. Gi
 Board Review
- LGD: Confirm; EET preferred (conditional). If surveilling → 6 mo, 12 mo, yearly with Seattle 1 cm.
 American Gastroenterological Association+1
- EET: ER any visible lesion → ablation of residual BE; RFA first-line, cryo as alternative/salvage; high-volume centers. Gi Board Review
- Post-CEIM: (LGD) 1, 3 yr → q2y; (HGD/IMC) 3, 6, 12 mo → yearly; biopsies of GEJ + distal 2–3 cm only. Gi Board Review
- EUS: generally not for pre-ER T staging in early disease; use selectively for suspected T1b/nodal disease. Gi Board Review

Next on the syllabus: **Module 6 — Eosinophilic esophagitis & PPI-responsive eosinophilia**: diagnostic criteria (EREFS + histology), treat-to-target (diet-PPI-topicals-dilation), and maintenance strategies that actually prevent fibrostenosis.

You said:

Next

ChatGPT said:

Request for GPT-5 Pro

Reasoned for 9m 16s

Module 6 — Eosinophilic esophagitis (EoE): diagnose cleanly, treat to targets, prevent fibrostenosis We'll lock down criteria, the biopsy playbook, and a practical "choose-your-lane" treatment algorithm (PPI \leftrightarrow topical steroids \leftrightarrow diet \leftrightarrow dupilumab) with dilation done safely and on purpose—not as a reflex.

Learning objectives

By the end you can:

- 1. Diagnose EoE without tripwires (≥15 eos/hpf + symptoms; evaluate alternatives). Lippincott Journals
- 2. Biopsy correctly the first time and score endoscopy consistently (EREFS). <u>Lippincott Journals+1</u>
- 3. Choose first-line therapy with shared decision-making—and know when to step up. <u>American College of Gastroenterology</u>
- 4. Dilate safely to target diameters while controlling inflammation. GIE Journal+1
- 5. Monitor to histologic and endoscopic targets (not symptoms alone) and maintain remission. <u>American College of Gastroenterology</u>

A. Diagnosis: criteria and the "off-therapy" index endoscopy

- Definition (ACG 2025): symptoms of esophageal dysfunction and ≥15 eos/hpf on esophageal biopsy
 after evaluating for other causes of esophageal eosinophilia. PPIs are treatment, not a diagnostic
 filter. Lippincott Journals
- Index endoscopy off therapy: To avoid false-negative histology, perform the initial diagnostic EGD off PPIs, dietary restriction, and swallowed/inhaled steroids when feasible. (This point is emphasized in ACG's "Guidelines-in-practice" explainer.) American College of Gastroenterology
- Consensus backbone: AGREE (international consensus) removed the mandatory "PPI trial" from diagnosis; patients scoped on PPIs with normal biopsies may still have EoE. PMC

B. Endoscopy & pathology: how to not miss it

- EREFS every time: document Edema, Rings, Exudates, Furrows, Stricture (and estimate diameter).
 EREFS improves communication and response tracking. <u>Lippincott Journals+1</u>
- Biopsy protocol: obtain ≥6 biopsies from ≥2 levels (proximal/mid and distal), target visible furrows/exudates, and quantify eos/hpf at every EoE endoscopy. If you're in for a food impaction, biopsy after extraction—capture the diagnosis before the patient disappears. Lippincott Journals

C. Choose-your-lane treatment (first-line options are peers—decide with the patient)

1) High-dose PPI

 Practical start: "double reflux dose" (e.g., omeprazole 20 mg BID or 40 mg daily equivalents) for induction; PPIs are effective long-term in a substantial subset. <u>American College of</u> <u>Gastroenterology+1</u>

2) Swallowed topical steroids

Budesonide oral suspension (EOHILIA®): on-label 12-week course for ages ≥11; label does not
establish safety/effectiveness beyond 12 weeks. FDA Access Data

 Compounded/slurry budesonide or swallowed fluticasone: typical adult targets budesonide 2–4 mg/day or fluticasone ~1,760 μg/day in divided doses; choose based on access and preference—similar efficacy. <u>American College of Gastroenterology</u>

3) Empiric elimination diet

Start less-restrictive (1-food dairy elimination [1-FED] or 2-FED). In RCTs, 1-FED ≈ 6-FED for histologic remission in adults; escalate step-up only if needed. Work with a dietitian. American College of Gastroenterology+1

4) Biologic therapy (dupilumab)

- When: PPI non-responders or as step-up when disease remains active or fibrostenotic risk looms.
 ACG lists it among recommended options. <u>Lippincott Journals</u>
- Dosing (label, weight-based):
 - o ≥40 kg: 300 mg weekly
 - 30–<40 kg: 300 mg every other week
 - o 15-<30 kg: 200 mg every other week (ages ≥1 year and ≥15 kg eligible) FDA Access Data

Treat-to-target mindset: aim for histologic remission (<15 eos/hpf) plus better EREFS and symptoms. Symptoms alone mislead—check mucosa. American College of Gastroenterology

D. Dilation: mechanical relief with biological backup

- When: dysphagia with fixed narrowing (strictures, rings, narrow-caliber esophagus).
- How: balloon or bougie; expect chest soreness; control mucosal inflammation in parallel (don't use dilation as monotherapy). <u>American College of Gastroenterology</u>
- Targets & safety: many adults need staged sessions to reach 16–18 mm; stepwise expansion lowers
 perforation risk. GIE Journal

E. Monitoring & maintenance (avoid the "yo-yo")

Reassess after induction (commonly ~8–12 weeks) with symptoms + EGD/biopsies (and EREFS).
 Maintain whatever worked (dietary or pharmacologic) to prevent relapse and fibrostenosis; don't stop just because the patient "feels fine." Lippincott Journals+1

F. Special/operational notes

- Atopy is common—coordinate but don't use allergy testing to pick foods for elimination; tests don't
 map well to EoE triggers. American College of Gastroenterology
- Food impaction is a diagnostic opportunity—scope urgently, extract, then biopsy before discharge.
 Lippincott Journals
- Pediatrics: dupilumab now down to age 1 (≥15 kg) with weight-based dosing; consider feeding therapy in kids with aversion. FDA Access Data+1

Numbers that matter (clipboard)

- Diagnosis: symptoms + ≥15 eos/hpf, evaluate alternatives; no PPI trial required. Lippincott Journals
- Biopsies: ≥6 from ≥2 levels; quantify eos/hpf every time; use EREFS. Lippincott Journals+1
- First-line choices: PPI (high-dose), topical steroids, empiric diet, dupilumab—all guideline-endorsed.
 Lippincott Journals
- Diet: start 1- or 2-FED; escalate if needed; 1-FED ≈ 6-FED remission in RCT. American College of Gastroenterology+1
- Dupilumab (EoE): ≥40 kg weekly 300 mg; 30-<40 kg 300 mg Q2W; 15-<30 kg 200 mg Q2W (ages ≥ 1 y, ≥15 kg). FDA Access Data
- Dilation: stage to 16–18 mm; pair with anti-inflammatory therapy. GIE Journal+1
- Maintenance: continue effective therapy; do not monitor by symptoms alone. <u>American College of Gastroenterology</u>

Pitfalls & board-style traps

- Declaring "no EoE" after a scoped-on-PPI normal biopsy—repeat off therapy if suspicion is high.
 PMC
- Treating stricture with dilation alone—recurrence is almost guaranteed without anti-inflammatory therapy. <u>American College of Gastroenterology</u>
- Using allergy tests to design elimination diets. That's not what they're good for here. <u>American</u>
 College of Gastroenterology
- Stopping therapy after symptoms improve. The mucosa didn't get the memo—confirm histologic control and maintain. <u>American College of Gastroenterology</u>

10-minute drill (mini-cases)

- 25-year-old with food impaction; EGD shows rings, furrows, exudates.
 Move: Extract; biopsy now (≥6 from ≥2 levels). Start high-dose PPI; plan follow-up EGD/biopsies off therapy if diagnosis uncertain; discuss diet vs steroid vs biologic once pathology returns. Lippincott Journals+1
- 2. 35-year-old on correct PPI BID—still 60 eos/hpf and EREFS 5.

Prior: Step-up to **topical steroid** (EOHILIA 12-week course if eligible, or sturry/fluticasone), **or** begin **1-FED** with dietitian. Re-scope in ~8–12 weeks; maintain the effective lane. FDA Access Data+1

3. 42-year-old with narrow-caliber esophagus; scope passes with resistance.

Plan: Begin anti-inflammatory therapy and **stage dilation** toward **16–18 mm** over multiple sessions; warn about post-dilation chest pain. GIE Journal

4. 14-year-old, weight 32 kg, persistent disease after PPI and diet.

Plan: Dupilumab 300 mg Q2W (label dosing for 30–<40 kg); continue dietary counseling and plan maintenance once histology responds. <u>FDA Access Data</u>

One-page takeaway

- Diagnose: symptoms + ≥15 eos/hpf; whenever possible, index EGD off PPIs/steroids/diet; EREFS + ≥ 6 biopsies from ≥2 levels with eos counts reported. <u>Lippincott Journals+2American College of Gastroenterology+2</u>
- Treat: pick PPI, topical steroid, empiric 1-/2-FED, or dupilumab—then treat to histology + EREFS, not just symptoms. Lippincott Journals+1
- Prevent fibrostenosis: pair dilation with anti-inflammatory therapy; stage to 16–18 mm. GIE Journal+1
- Maintain remission once achieved; relapse is the rule without maintenance. <u>American College of Gastroenterology</u>

Next: Module 7 — Other immune/inflammatory esophagitides (lymphocytic esophagitis, lichen planus, Crohn's/Behçet/Sarcoid, GVHD, IgG4). We'll do pattern recognition, biopsy asks, and treatment frameworks that actually help.

You said:

Next

ChatGPT said:

Request for GPT-5 Pro

Reasoned for 7m 34s

Module 7 — Other immune/inflammatory esophagitides

These are the zebras that keep clinic interesting: lymphocytes without eosinophils, lichens where you least expect them, mucosa that peels like gift-wrap, and systemic diseases that use the esophagus as a billboard. We'll make them pattern-recognition-friendly and biopsy-savvy.

Learning objectives

By the end you can:

- Recognize and biopsy lymphocytic esophagitis (LE), esophageal lichen planus (ELP), esophagitis dissecans superficialis (EDS), and systemic-disease esophagitides (Crohn's, Behçet, sarcoid, GVHD, IgG4-RD, autoimmune bullous).
- Order the right stains/tests (DIF, IgG4 counts/ratios, special histology asks) and avoid look-alike traps (EoE, candidiasis, reflux).
- 3. Build **pragmatic treatment plans**—topical/systemic steroids, PPIs, immunomodulators/biologics, and cautious dilation where it helps.

1) Lymphocytic esophagitis (LE)

Pattern to spot

Often middle-aged/older adults with dysphagia or chest pain; endoscopy ranges from normal to rings, webs, or strictures; sometimes trachealization that mimics EoE. Histology shows peripapillary intraepithelial lymphocytosis, marked spongiosis (intercellular edema), and few/no granulocytes. No universal cutoff exists; many series use ≥20–50 lymphocytes/HPF with peripapillary accentuation and epithelial injury. modernpathology.org+4PMC+4PubMed+4

Biopsy ask (write this in your path request): "Please quantify intraepithelial lymphocytes per HPF, comment on peripapillary accentuation and spongiosis, and note presence/absence of neutrophils/eosinophils." (Optional: CD3/CD8 profile if researchy.) MDPI

Management (evidence = low-quality, practical first):

- PPI optimization first; many patients improve.
- Swallowed topical steroids (fluticasone/budesonide) for persistent symptoms/stricturing phenotype.
- Dilation for strictures after inflammation is addressed. (Data are from small series and reviews; treat
 as a pragmatic algorithm rather than dogma.) NCBI

Pitfalls

- LE ≠ "normal variant": when symptoms fit and biopsies match, treat; don't reflexively relabel as reflux or EoE.
- Don't diagnose LE without epithelial injury or when granulocytes are prominent—look again for reflux, EoE, infection. PMC

2) Esophageal lichen planus (ELP)

Pattern to spot

 Classically middle-aged women with oral/genital LP; proximal esophageal involvement; friable sloughing mucosa, white plaques, longitudinal pseudomembranes, and adhesions/strictures. Dyspiasia and SCL risk are non-zero (smail conorts suggest "5-0%). PIVIC+2PIVIC+2

Biopsy ask

Sample proximal and mid esophagus and any lesions; request direct immunofluorescence (DIF)—
fibrinogen along the basement membrane supports LP. Exclude candidiasis with PAS if exudative.
PMC

Therapy (stepwise, patient-centered)

- Swallowed topical steroids (fluticasone/budesonide) improve symptoms and mucosa in case series;
 watch for thrush.
- Systemic steroids for severe/acute disease; steroid-sparing agents (e.g., tacrolimus, others) reported
 in refractory cases.
- Dilation for strictures after inflammation is controlled; proceed gently. <u>PubMed+2Lippincott</u>
 Journals+2

Counseling

 Discuss SCC surveillance once disease is established, especially with long-standing stricturing disease (evidence base is small; set expectations accordingly). Frontiers

3) Esophagitis dissecans superficialis (EDS, "sloughing esophagitis")

Pattern to spot

Dramatic endoscopic sheets/strips of sloughed squamous mucosa (the "gift-wrap" sign), often in
older adults; associated with medications (NSAIDs, bisphosphonates), smoking,
autoimmune/dermatologic disease, caustics, or idiopathic. Histology shows superficial necrosis with
detached squamous layers. CGH Journal+2PMC+2

Management

Remove triggers, optimize acid suppression, treat coexisting conditions (e.g., LP, GVHD), and avoid
unnecessary antifungals unless biopsy shows Candida. Most cases resolve conservatively. PubMed

Pitfall

Mistaking EDS for candidiasis on sight—biopsy before committing to antifungals. PMC

4) Systemic/immune diseases with esophageal involvement

a) Crohn's disease of the esophagus

Rare; symptoms: dysphagia, odynophagia, chest/epigastric pain. Endoscopy may show aphthoid or
 "punched-out" ulcers, longitudinal/cobblestone mucosa, strictures, fistulas—often in mid/distal
 esophagus. Biopsy: chronic active esophagitis; granulomas are infrequent. Treat per Crohn's
 principles: PPI for symptoms, systemic steroids for active disease, and
 immunomodulators/anti-TNF agents for maintenance/refractory disease; dilate strictures when
 safe_PMC+1

b) Behçet's disease (esophageal involvement)

Esophageal ulcers are less common than ileocecal disease; lesions can be deep, punched-out.
 Management follows EULAR: glucocorticoids for active ulcers; azathioprine for steroid-sparing;
 anti-TNF agents for refractory/severe GI disease. Coordinate with rheumatology. BMJ Advances in Rheumatology

c) Sarcoidosis

 Extremely rare in the esophagus; mechanisms include wall infiltration, extrinsic compression, or neuromuscular dysfunction (cranial neuropathy, brainstem). First-line therapy is systemic corticosteroids; treat mechanism-specific complications (e.g., dilation for stricture). PMC+1

d) Chronic graft-versus-host disease (GVHD)

 Post-HSCT patients may develop desquamative esophagitis, webs/strictures, or even EDS-like sloughing; biopsies show epithelial apoptosis with basal damage. Manage with immunosuppression (per transplant team) and cautious dilation for fibrostenotic sequelae. PubMed+2PMC+2

e) IgG4-related disease (IgG4-RD) of the esophagus

Rare, often presents with strictures or mass-like lesions. Pathology: dense lymphoplasmacytic infiltrate, storiform fibrosis, and sometimes obliterative phlebitis, with increased IgG4+ plasma cells and elevated IgG4/IgG ratio (organ-specific thresholds vary; esophageal criteria are not fully validated). First-line therapy is systemic steroids; consider rituximab for refractory systemic IgG4-RD. Karger Publishers+2PubMed+2

f) Autoimmune bullous disorders (mucous membrane pemphigoid, pemphigus vulgaris)

 Can cause proximal strictures, webs, sloughing, and painful erosions. Treat the systemic disease (steroids, immunosuppressants/IVIG) with dermatology; use gentle, staged dilation for fibrostenosis. aoe.amegroups.org+2PMC+2

5) Biopsy & lab menu (clipboard-ready)

LE: multiple levels; ask for lymphocyte counts, peripapillary accentuation, spongiosis, and absence
of granulocytes: consider CD3/CD8 profile if needed. PMC

- ELP: sample proximal/mid; order DIF (look for fibrinogen at the basement membrane); rule out Candida (PAS). PMC
- IgG4-RD: request IgG4 and total IgG counts with IgG4/IgG ratio; mention storiform fibrosis/obliterative phlebitis in the question to path. Thresholds vary by organ; esophageal criteria are extrapolated—interpret with caution. Karger Publishers
- Bullous disease: alert pathology for immunofluorescence; mucosal biopsies at the edge of erosions can help. Meridian
- GVHD: look for apoptosis/basal damage; correlate with transplant timeline and other GI tract sites.
 PubMed

6) Treatment heuristics (don't overtreat, don't undertreat)

- Inflammation control first, dilation second for fibrostenotic disease; re-scope to document response before escalating. (Works across ELP, LE, GVHD, IgG4, bullous.) <u>PubMed</u>
- Topical steroids (budesonide/fluticasone) are a reasonable first step for ELP and steroid-responsive LE; add PPI if reflux overlap exists. PubMed
- Systemic steroids for ELP flares, IgG4-RD, sarcoid, Behçet, Crohn's, and GVHD as appropriate—then
 move to steroid-sparing agents (azathioprine, biologics like anti-TNF where disease-specific data
 support). Coordinate care with rheumatology/dermatology/transplant teams. BMJ Advances in
 Rheumatology+1
- Surveillance for cancer in ELP when disease is long-standing and stricturing; set expectations about limited evidence but non-zero risk. <u>Frontiers</u>

Numbers that matter (and caveats)

- LE histology: use a pattern rather than a single number; many cohorts use ≥20-50
 lymphocytes/HPF, peripapillary accentuation, spongiosis, and rare granulocytes. PMC+1
- ELP SCC risk: small series suggest ~5–6%; evidence limited—surveillance decisions are individualized.
 Frontiers
- IgG4-RD: classic triad—lymphoplasmacytic infiltrate, storiform fibrosis, obliterative phlebitis; supportive counts/ratios (e.g., IgG4/IgG >40%, elevated IgG4+ cells), but esophageal thresholds unvalidated. Karger Publishers
- Dilation targets: stepwise 15–18 mm typical for benign strictures; in ELP/GVHD/bullous, go slow and treat inflammation in tandem due to fragile mucosa. PubMed

Pitfalls & board-style traps

- Calling ELP "candida" and handing out antifungals without biopsy—DIF can clinch ELP. PMC
- Over-diagnosing LE when neutrophils/eosinophils are present or epithelial injury is absent reconsider reflux/EoE/infection. PMC
- Forgetting the proximal esophagus in suspected ELP—disease is often proximal. PMC
- Treating fibrostenotic ELP/GVHD with dilation alone—high recurrence and tears without anti-inflammatory control. PubMed
- Assuming IgG4 counts alone make the diagnosis—you also need storiform fibrosis/obliterative
 phlebitis and a systemic look. Karger Publishers

10-minute drill (mini-cases)

- 62-year-old woman, dysphagia; EGD: proximal sloughing, fragile mucosa, thin rings; oral lacy white lesions.
 - **Plan:** Biopsy proximal/mid lesions; request **DIF** (fibrinogen at BM). Start **swallowed topical steroid**; add PPI; treat candida only if proven. Consider gentle staged dilation once mucosa cools. PMC+1
- 55-year-old on alendronate/NSAID; EGD shows "gift-wrap" sloughing sheets; biopsies: superficial necrosis, no fungi.
 - Plan: Stop triggers, optimize PPI, supportive care; no antifungals. CGH Journal
- 30-year-old with known Crohn's; odynophagia; mid-esophageal punched-out ulcers.
 Plan: Treat active Crohn's (systemic steroids → immunomodulator/anti-TNF as needed), PPI for pain; biopsy to exclude infection. Dilate later if fixed narrowing remains. PMC
- Post-allo-HSCT patient, weight loss and dysphagia; EGD: webs + mucosal sloughing; histology c/w GVHD.
 - **Plan:** Coordinate with transplant for **immunosuppression**; staged dilations for symptomatic webs/strictures when inflammation quiets. PubMed
- 5. 48-year-old man with tight distal stricture; histology: dense IgG4+ plasma cells, storiform fibrosis; elevated serum IgG4.
 - **Plan: Systemic steroids** with systemic IgG4-RD evaluation; gentle dilation if residual stricture remains after response; consider rituximab if refractory. Karger Publishers

One-page takeaway

Think pattern + biopsy: LE (lymphocytes + spongiosis, no granulocytes), ELP (proximal, friable, DIF-positive), EDS (sloughing sheets; rule out drugs, autoimmune), and the systemic set (Crohn's, Behcet, sarcoid, GVHD, IgG4, bullous). PMC+2PMC+2

- Order the right tests (DIF; IgG4 counts/ratio with histologic triad). Treat inflammation first, dilate second, and partner with rheum/derm/transplant where disease dictates. Karger Publishers
- Surveil smartly in ELP; don't overcall LE; don't treat EDS as Candida without proof. <u>Frontiers+2PMC+</u>
 2

Next: Module 8 — Infectious esophagitis (Candida, HSV, CMV, HIV-related ulcers, with

transplant/oncology nuances and timing-of-biopsy pearls).

You said:

Next

ChatGPT said:

Request for GPT-5 Pro

Reasoned for 12m 20s

Module 8 — Infectious esophagitis (Candida, HSV, CMV... and the rare beasts)

Triage fast, biopsy smart, treat precisely. We'll keep this at gastroenterologist depth with decision points you can run at 2 a.m.

Learning objectives

By the end you can:

- Decide empiric therapy vs. urgent EGD for odynophagia/dysphagia in immunocompromised patients. IDSA+1
- Recognize endoscopic patterns of Candida, HSV, and CMV and sample the right place (edge vs base) to nail the diagnosis. PMC+2librepathology.org+2
- Prescribe first-line regimens with correct dose and duration, including pregnancy and transplant nuances. IDSA+2ClinicalInfo+2

A. Triage: empiric treatment or scope now?

Classic high-pretest scenario (HIV/chemo/SOT) with odynophagia ± thrush

Reasonable to start empiric fluconazole and scope if no improvement within ~72 h (or earlier if severe, atypical, bleeding, or chest pain suggesting ulcer). IDSA+1

Red flags / scope early

 Severe odynophagia with systemic toxicity, GI bleeding, focal severe chest pain, prolonged neutropenia, or no oropharyngeal thrush (higher odds of HSV/CMV). Plan EGD with biopsies rather than prolonged empiricism. Medscape

B. Pattern recognition on endoscopy (and where to biopsy)

Etiology	Typical endoscopic look	Where to biopsy/brush	Pathology pearls
Candida	Adherent white plaques that may bleed when scraped; scattered or confluent	Brushings/biopsy of plaques	Yeast & pseudohyphae on PAS/GMS; culture only if refractory/atypical. PMC
HSV	Multiple small "punched-out/volcano" ulcers, often mid-distal; edematous rim	Ulcer edge (viral cytopathic effect in squamous epithelium)	Multinucleation, molding, margination ("3 Ms"); IHC/PCR can confirm. librepathology.org+1
CMV	Larger, linear/longitudinal shallow ulcers, usually distal	Ulcer base (virus in endothelial/stromal cells)	Owl-eye inclusions; IHC increases yield. PMC+1

Rule of thumb: **HSV at the edges, CMV at the base.** This maximizes diagnostic yield when you only get one good pass. <u>librepathology.org+1</u>

C. First-line treatment (adult dosing)

1) Esophageal candidiasis

- Empiric/first line: Fluconazole 200–400 mg PO daily for 14–21 days. If unable to take PO: fluconazole 400 mg IV daily, or an echinocandin (micafungin 150 mg IV daily, caspofungin 70 mg load → 50 mg daily, anidulafungin 200 mg daily). Trial of antifungal therapy before EGD is acceptable in typical cases. IDSA
- Fluconazole-refractory/intolerant: Itraconazole solution 200 mg daily or voriconazole 200 mg BID for 14–21 days. Step down to oral fluconazole once tolerated. Amphotericin B is a less-preferred fallback. IDSA
- Pregnancy: prefer amphotericin B for invasive/mucosal candidiasis; avoid high-dose azoles. IDSA

2) HSV esophagitis

- Immunocompromised / severe: Acyclovir 5–10 mg/kg IV q8h until improved, then oral step-down; total ~14–21 days. Valacyclovir is a convenient oral option when able to swallow. <u>ClinicalInfo+1</u>
- Immunocompetent, mild/moderate: often self-limited; acyclovir 400 mg PO 5×/day for 7–10 (up to 14–21) days shortens illness. PMC+1
- Pearls: adjust for renal function; counsel hydration (crystalluria risk with IV acyclovir). ClinicalInfo

3) CMV esophagitis (immunosuppressed, including HIV/SOT)

- Induction: Ganciclovir 5 mg/kg IV q12h, or valganciclovir 900 mg PO BID in selected stable cases, for 21–42 days until symptom and endoscopic/healing response. ClinicalInfo
- Toxicities/monitoring: neutropenia and renal issues—monitor CBC and creatinine; switch to
 foscarnet/cidofovir if ganciclovir-resistant or intolerant. ClinicalInfo+1

D. When to culture / PCR / IHC

- Candida: routine culture not needed initially; consider if refractory to guide species/azole resistance.
 IDSA
- HSV/CMV: histology + IHC is the diagnostic backbone; add PCR if tissue is limited or equivocal.
 Sampling strategy (edge for HSV, base for CMV) matters more than the brand of stain. PMC+1

E. Special contexts

- HIV: With odynophagia and thrush, fluconazole empiric therapy is appropriate; EGD if no response in 3–7 days or if atypical. ClinicalInfo
- Transplant/oncology: lower threshold to biopsy before long empiric courses; CMV disease may
 coexist and has therapeutic urgency. <u>ClinicalInfo</u>
- Pregnancy: avoid high-dose azoles for Candida; amphotericin B preferred when systemic therapy required. IDSA

F. Numbers that matter (clipboard)

- Fluconazole (esophageal candidiasis): 200–400 mg PO daily x 14–21 days; IV 400 mg daily if NPO.
 Micafungin 150 mg IV daily as an alternative. IDSA
- HSV: Acyclovir 5–10 mg/kg IV q8h severe; oral 400 mg 5×/day (or valacyclovir 1 g BID) mild; ~ 14–21 days total. ClinicalInfo+1
- CMV: Ganciclovir 5 mg/kg IV q12h or valganciclovir 900 mg BID, 21–42 days; monitor CBC/Cr. ClinicalInfo
- Biopsy: HSV—edge; CMV—base (IHC improves yield). PMC+1
- "No better in 72 h?" → EGD. Don't ride empiric therapy for weeks. NCBI

Pitfalls & board-style traps

- Treating "candida" for weeks without checking: if no response in 3–7 days, scope and biopsy—a
 deep CMV ulcer won't care about fluconazole. ClinicalInfo
- Biopsying the wrong spot: HSV hides in ulcer edges, CMV in bases—swap those and you'll miss both.
 PMC+1
- Itraconazole capsules for Candida (poor absorption without acid/food) instead of solution—use solution if you need itraconazole. IDSA
- Forgetting pregnancy nuance: high-dose azole exposure is avoidable; choose amphotericin B when systemic therapy is needed. IDSA
- Not monitoring ganciclovir toxicity: missed neutropenia can end badly—CBCs are not optional. <u>ClinicalInfo</u>

10-minute drill (mini-cases)

- 1. HIV with CD4 60, thrush + severe odynophagia.
 - Start fluconazole 400 mg daily; if no improvement by day 3–4, EGD with biopsies (edge and base) to rule in HSV/CMV and redirect therapy. <u>ClinicalInfo+1</u>
- Allogeneic HSCT day 45, fevers + chest pain + hematemesis; EGD shows a 3-cm linear distal ulcer.
 Biopsy base; if CMV on IHC, treat ganciclovir 5 mg/kg IV q12h and monitor CBC/Cr; treat 21–42 days until clinical and endoscopic resolution. ClinicalInfo
- Myeloma on bortezomib; odynophagia without thrush; multiple small punched-out ulcers mid-distal.
 - **Biopsy edges**; start **IV acyclovir** while awaiting histology if severe; step down to PO when improved; total ~14–21 days. ClinicalInfo
- 4. Pregnant (2nd trimester) with dysphagia, white plaques on EGD.
 - Favor amphotericin B regimen if systemic therapy needed; avoid high-dose azoles. IDSA
- 5. Solid-organ transplant on tacrolimus; suspected Candida esophagitis not improving after 4 days of fluconazole.
 - Switch to micafungin 150 mg IV daily, culture/identify species, and scope to rule out CMV coinfection. IDSA

One-page takeaway

- Empiric fluconazole is fine when the story screams Candida, but lack of improvement in ~72 h = EGD.
 IDSA+1
- Recognize/biopsy right: HSV edge, CMV base; use IHC/PCR if tissue is scant. librepathology.org+1
- Dose & duration matter: Candida fluconazole 200–400 mg x14–21 days; HSV acyclovir IV for severe;
 PO for mild; CMV ganciclovir/valganciclovir x21–42 days with CBC/renal checks. IDSA+2ClinicalInfo+

2

 Pregnancy & toxicity: amphotericin B is the safer systemic antifungal; ganciclovir needs vigilant blood counts. IDSA+1

Next up — Module 9: Primary motility disorders (Chicago v4.0 in action). We'll synthesize HRM + TBE + FLIP, choose among **POEM vs LHM vs pneumatic dilation**, and manage the reflux aftermath like pros.

You said:

Next ChatGPT said:

Request for GPT-5 Pro

Reasoned for 7m 33s

Module 9 — Primary motility disorders (Chicago v4.0 in action)

We'll fuse HRM + TBE + FLIP into one clean decision tree, then pick therapies that fit the physics—POEM, LHM, or pneumatic dilation—with eyes wide open about reflux afterwards.

Learning objectives

By the end you can:

- Apply Chicago Classification v4.0 (CCv4.0) correctly (IRP/DCI/DL + EGJ morphology; upright + supine + provocations). PMC
- Distinguish achalasia subtypes (I–III) and EGJ outflow obstruction (EGJOO), and confirm "clinically relevant" EGJOO with TBE/FLIP. PMC+1
- Choose POEM vs laparoscopic Heller myotomy (LHM) vs graded pneumatic dilation (PD) by subtype and patient factors—and manage the reflux aftermath. <u>Lippincott Journals+1</u>

A) Chicago v4.0—what to read and report (no guesswork)

- Protocol: supine and upright 5-mL swallows + provocations (multiple rapid swallows, rapid drink challenge). Report IRP, DCI, DL, EGJ morphology. PMC
- Key thresholds (device/posture labs differ; use lab norms):
 - o DCI > 8,000 mmHg·s·cm = hypercontractile ("jackhammer").
 - **DL < 4.5 s** = premature contraction (spasm).
 - IEM requires ≥70% ineffective or ≥50% failed swallows (stricter than v3.0). Wiley Online
 Library
- EGJ morphology (LES–crural diaphragm): Type I (overlap), II (1–2 cm), III (≥2 cm) which mirrors hiatal hernia physiology. PMC

Achalasia phenotypes (HRM):

- Type I: elevated IRP + aperistalsis.
- Type II: elevated IRP + pan-esophageal pressurization.
- Type III: elevated IRP + spastic/fragmented contractions. PMC

B) EGJOO in CCv4.0—don't label it lightly

- **Diagnosis tightened**: CCv4.0 slashes over-calling by insisting on **supportive evidence of obstruction** (e.g., FLIP or TBE) and clinical correlation—**not** HRM alone. <u>PMC</u>
- Next steps when HRM flags EGJOO:
 - $\circ \quad \textbf{Rule out secondaries} \ (\text{opioids, post-fundoplication, large hernia, stricture, cancer}).$
 - Timed barium esophagram (TBE) with 1, 2, 5-min column heights ± 13-mm tablet. AJR Online+
 - FLIP panometry for EGJ distensibility and opening under load; helps identify clinically relevant obstruction. CGH Journal+1
- Opioid-induced esophageal dysfunction (OIED) can mimic spastic patterns/EGJOO; de-escalate
 opioids and retest before labeling disease. <u>Mayo Clinic+1</u>

C) Achalasia—choose therapy by subtype and patient

What works (and how well)

- POEM vs LHM: RCT shows POEM noninferior to LHM + Dor at 2 years; reflux was more common after POEM (endoscopic/pH). New England Journal of Medicine+1
- Guidelines: ACG endorses POEM, LHM, or graded PD as definitive options; Type III tends to do best with POEM because the myotomy can be long and tailored. Lippincott Journals+1

Picking the lane (practical)

- Type I-II: POEM, LHM, or graded PD are all reasonable; PD often excels in Type II. Discuss durability, reflux risk, and local expertise. PMC
- Type III: POEM (extended proximal myotomy) usually wins on symptom control; PD is modest; LHM with long myotomy is an alternative where expertise exists. PMC
- High-surgical-risk/frail: Botulinum toxin for short-term relief or as a bridge; durability is limited. aoe.amegroups.org

How to do graded pneumatic dilation (PD) well

• **Graded**: start **30 mm → 35 mm** (→ 40 mm selectively). This minimizes perforation risk compared with starting at 35 mm. PMC+2yyyyy asgo organ

 Risk: perforation is the feared AE; risk jumps when starting at 35 mm. Have a repair plan. jxym.amegroups.org

D) Spastic disorders (DES & hypercontractile): treat the mechanism

First principles

- Check for OIED and deprescribe opioids if possible; they bias HRM toward spasm/hypercontractility. Mayo Clinic+1
- 2. Prove/optimize GERD if symptoms overlap. PubMed

Medical options (modest but safe to try)

- Calcium-channel blockers (e.g., diltiazem 60–90 mg QID) or nifedipine before meals.
- Nitrates or PDE-5 inhibitors (sildenafil) as rescue/short-term agents.
- Peppermint oil or low-dose neuromodulators for chest pain phenotype. Evidence is small and symptomatic. PMC+1

Endoscopic/surgical options

- Botulinum toxin: short-lived benefit; consider for non-operative candidates. Medscape
- POEM directed at the spastic segment ("S-POEM"/long myotomy) for refractory
 DES/hypercontractile disease—effective in series, with the usual trade-off of more reflux than antireflux surgery.

E) Absent contractility (AC) & scleroderma esophagus

- Definition: normal LES relaxation (IRP) with 100% failed peristalsis. Common with systemic sclerosis.
- Management: control GERD aggressively (high-dose PPI; consider alginate at night), treat peptic strictures with gentle staged dilation, and coordinate rheumatologic care. Myotomy/PD won't restore peristalsis. PMC+1

F) Post-therapy follow-up: prove success, hunt reflux

How to check mechanical success

- Timed barium esophagram (TBE) at 1, 2, 5 min (± tablet). After definitive therapy, you want substantial column reduction; many use <5 cm at 5 min as a pragmatic success marker. Pair with symptoms (Eckardt). AJR Online+1
- Eckardt score ≤3 is the classic symptom target in trials. New England Journal of Medicine
- FLIP can confirm adequate EGJ opening post-myotomy (distensibility increases and the waist opens under load). Use contextually, not as a solo judge. <u>CGH Journal</u>

Reflux monitoring

 Expect more abnormal acid exposure after POEM than after LHM + fundoplication; plan PPIs and objective reflux testing if symptomatic or if esophagitis is seen. PubMed+1

Numbers that matter (clipboard)

- CCv4.0: DCI >8,000 = hypercontractile; DL <4.5 s = spasm; IEM threshold tightened (≥70% ineffective or ≥50% failed). Wiley Online Library
- EGJOO: needs support (TBE/FLIP) to be "clinically relevant"; don't diagnose on HRM alone. PMC
- TBE protocol: upright images at 1, 2, 5 min after ~150–200 mL thin barium; consider 13-mm tablet.
 AJR Online+1
- PD: 30 mm → 35 mm (→ 40 mm selectively); starting at 35 mm raises perforation risk. www.asge.org+1
- POEM vs LHM: similar symptom control; POEM has higher reflux by pH/endoscopy. New England
 Journal of Medicine+1
- Eckardt success: ≤3. New England Journal of Medicine

Pitfalls & board-style traps

- Labeling EGJOO from HRM alone—confirm with TBE/FLIP and rule out opioids and mechanical causes. PMC+1
- Starting PD at 35 mm "to get it over with"—it buys you a perforation, not a shortcut. ixym.amegroups.org
- Treating Type III achalasia with PD and calling it "refractory" instead of choosing a long myotomy (POEM) up front. PMC
- For spastic disorders: forgetting to de-opioidize the patient and to test/optimize GERD before spraying botox everywhere. Gastro Journal+1
- Expecting myotomy to fix absent contractility—manage reflux and strictures instead. PMC

10-minute drill (mini-cases)

1. HRM: IRP ↑, panesophageal pressurization in ≥20% swallows (Type II). **TBE**: tall column, tablet stuck. **Plan: POEM, LHM, or graded PD** are all valid; in an older patient with comorbidities, **graded PD** is

- often excellent. EGD on PPI post-therapy to surveil reflux/esophagitis. PMC
- HRM: IRP ↑ with premature contractions (Type III). Patient: 48 y, otherwise healthy.
 Plan: POEM with a long proximal myotomy to cover spastic segment; plan reflux management afterwards. PMC+1
- HRM: possible EGJOO. Meds: chronic oxycodone. TBE: near-normal emptying. FLIP: normal opening with distension.
 - Plan: Likely OIED—wean opioids and repeat HRM rather than myotomizing a mirage. Mayo Clinic
- 4. **DES/hypercontractile** chest pain despite PPI; no opioids.
 - **Plan:** Trial **diltiazem** (or short-course nitrate/PDE-5) → if refractory, **targeted botox** or **POEM** of spastic segment in expert hands. Counsel about **reflux** risk. **PMC+1**
- Scleroderma with absent contractility and peptic stricture.
 Plan: High-dose PPI + staged gentle dilations; no myotomy/PD. Assess extra-esophageal reflux complications with the rheum team. PMC

One-page takeaway

- Run CCv4.0 right: dual posture, provocations; call disorders by IRP/DCI/DL + EGJ morphology. PMC
- Confirm EGJOO with TBE/FLIP and secondary-cause check (opioids!) before cutting or dilating.
 PMC+1
- Achalasia Type I–II: POEM/LHM/graded PD all work; Type III: favor POEM. Expect more reflux after POEM and plan therapy/testing. PMC+1
- Spastic disease: small-win meds → botox → POEM if refractory, after ruling out OIED/GERD. PMC+1
- Absent contractility: treat reflux + strictures; motility restoration isn't on the menu. PMC

Next up — Module 10: Secondary motility & pseudoachalasia. We'll separate

scleroderma/Chagas/OIED/malignancy-related pseudoachalasia from the primary group and map treatments that actually help.

You said:

Next

ChatGPT said:

Request for GPT-5 Pro

Reasoned for 5m 36s

Module 10 — Secondary motility & pseudoachalasia (don't cut a mirage)

This is the land of look-alikes: cancer and surgical mishaps that mimic achalasia, smooth-muscle diseases that erase peristalsis, and **opioids** that rewrite manometry. We'll build a tight rule-set to spot them and treat the cause, not the pattern.

Learning objectives

By the end you can:

- Recognize red flags for pseudoachalasia and choose the right next test (EGD/EUS/CT) before committing to achalasia therapy. PubMed+2PubMed+2
- Distinguish systemic sclerosis (scleroderma) esophagus, Chagas megaesophagus, and opioid-induced esophageal dysfunction (OIED) from primary motility disease—and manage each appropriately. Mayo Clinic+4CGH Journal+4Lippincott+4
- Handle post-fundoplication EGJ obstruction without over-treating with myotomy. <u>CGH Journal+</u> 2PubMed+2

Quick taxonomy (what "secondary" can look like)

- Malignancy-related pseudoachalasia (EGJ/gastric cardia adenocarcinoma most common; also esophageal SCC, metastatic disease; rare paraneoplastic/anti-Hu). <u>PubMed+2Annals of Esophagus+2</u>
- latrogenic/mechanical: post-fundoplication or large-band bariatric procedures; slipped/tight wraps; paraesophageal hernia; extrinsic compression. <u>CGH Journal+1</u>
- Systemic disease: systemic sclerosis (absent contractility + hypotensive LES), Chagas (achalasia-like), amyloidosis. CGH Journal+1
- Drug-related: OIED—spastic patterns/EGJOO on HRM with chronic opioids; often normalizes when
 opioids are withdrawn. Mayo Clinic+1

A) Pseudoachalasia: when should you smell a ruse?

Four clinical tells (any $2 \rightarrow$ escalate the work-up):

- Age ≥55, symptom duration ≤12 mo, weight loss ≥10 kg, and difficulty passing the OGJ at endoscopy. These increase the odds of malignancy-associated pseudoachalasia. PubMed What to do next
- EGD with careful retroflexion + targeted biopsies; if resistance/asymmetry at the OGJ or normal mucosa but high suspicion → EUS (submucosal/infiltrative disease) ± CT. Don't rely on manometry alone. SpringerLink+1
- Remember: 2–4% of "achalasia-like" presentations are actually pseudoachalasia, often due to malignancy. Treating them like idiopathic achalasia delays oncology care. <u>PMC+1</u>

Management

• Treat the underlying cause (oncology/surgery). Endoscopic stents or feeding plans are palliative

B) Systemic sclerosis (scleroderma) esophagus

Signature physiology

 HRM: absent contractility in the distal esophagus with low LES pressure; reflux is common and severe. CGH Journal+1

Management playbook

- Acid control: high-dose PPI is standard to prevent esophagitis/stricture—even though randomized data specific to SSc esophagus are limited. Lippincott
- Dysphagia/stricture: gentle, staged dilations with maintenance acid suppression. CGH Journal
- Surgery (rare, selected): partial wraps can help refractory GERD in expert hands; outcomes are
 variable because peristalsis is absent—choose carefully and individualize. <u>SAGE Journals+1</u>
- Expectations: prokinetics may help symptoms in SSc GI disease broadly, but evidence for restoring
 esophageal peristalsis is weak; manage reflux and complications rather than chasing peristalsis. <u>OUP</u>
 Academic

Clinical translation: **Myotomy doesn't help SSc esophagus** (the LES is already weak); your wins are reflux control and safe dilation. CGH Journal

C) Chagas disease (megaesophagus, achalasia-like)

Path

 Trypanosoma cruzi damages the myenteric plexus → achalasia physiology (often long-standing, dilated esophagus). JNM Journal

Therapy

- Treat like idiopathic achalasia: POEM, LHM, or graded PD; comparative series show POEM works similarly in Chagasic and idiopathic achalasia. (Antitrypanosomal therapy doesn't reverse established esophageal dysmotility.) PMC
- Expect reflux post-myotomy; plan surveillance and PPI as in idiopathic disease. PMC

D) Opioid-induced esophageal dysfunction (OIED)

Clues

 Chronic opioids → HRM shows spasm/hypercontractility or EGJOO/achalasia-like; spastic patterns are over-represented in current users. Mayo Clinic+1

Move set

- Deprescribe/taper opioids, then repeat HRM (and/or TBE/FLIP). Many normalize or improve off opioids—don't myotomize a pharmacologic artifact. Mayo Clinic+1
- If patients cannot stop opioids, treat symptoms conservatively (GERD optimization; cautious use of smooth-muscle relaxants) and reserve interventions for compelling, corroborated obstruction.
 Gastrojournal

E) Post-fundoplication & other iatrogenic EGJ obstruction

What happens

 A tight/slipped wrap, crural over-repair, or device (e.g., band) can produce EGJ outflow obstruction or an achalasia-like picture. CGH Journal

Evaluation

EGD (geometry, resistance), barium (hold-up), HRM (elevated IRP with preserved peristalsis or AC), ±
 EUS/CT if malignancy is possible. www.elsevier.com

Management

Endoscopic dilation helps many with post-fundoplication dysphagia; if anatomy is wrong
 (slipped/twisted/too-tight), surgical revision is definitive (often takedown + partial wrap). For gastric
 bands, deflate/remove (including fibrotic capsule). CGH Journal+2PubMed+2

Diagnostic algorithm (clipboard version)

- Manometry suggests achalasia/EGJOO → pause.
 Check age, weight loss symptom tempo, and scope passage.
 - Check age, weight loss, symptom tempo, and scope passage at OGJ. If \geq 2 red flags \rightarrow EGD (targeted) + EUS ± CT before achalasia therapy. PubMed+1
- On chronic opioids? Taper → repeat HRM; corroborate with TBE/FLIP before labeling EGJOO. Mayo Clinic
- Scleroderma phenotype (AC + low LES): aim for PPI and dilation; avoid LES-cutting procedures. <u>CGH Journal</u>
- Chagas geography/history + achalasia physio: treat like idiopathic (POEM/LHM/PD), plan reflux management. PMC
- 5. Prior antireflux surgery/device: think mechanical; dilation if appropriate, else surgical revision. CGH Journal

Numbers & facts to remember

■ Deauthorchalosia provalence among "achalosia-like" presentations: ~2_4%: ~70% of malignant

- pseudoachalasia from EGJ/gastric cardia cancer. PubMed
- Red-flag quartet: ≥55 y, ≤12 mo symptoms, ≥10 kg weight loss, scope won't pass OGJ → investigate
 for malignancy before therapy. PubMed
- Scleroderma HRM: absent contractility + hypotensive LES; manage reflux/strictures (PPIs + dilations). CGH Journal
- Chagas: POEM performs comparably to idiopathic achalasia in series. PMC

Pitfalls & board-style traps

- Rushing to POEM/LHM in a 70-year-old with 8 kg in 3 months and a "tight" OGJ—you might be cutting through cancer. Image/EUS first. <u>PubMed</u>
- Diagnosing EGJOO on HRM in a patient on high-dose oxycodone—that's OIED until proven otherwise. Taper and retest. Mayo Clinic
- Myotomy for scleroderma esophagus. Wrong physics: the barrier is already weak; you'll trade dysphagia for severe reflux. <u>CGH Journal</u>
- Endlessly dilating a post-fundoplication patient with a slipped/twisted wrap—fix the anatomy, don't fight it. <u>CGH Journal</u>

10-minute drill (mini-cases)

- 62-year-old, 5-month history, 12-kg weight loss, can't pass OGJ at EGD; HRM "achalasia."
 Plan: High suspicion for malignancy-related pseudoachalasia → EUS of OGJ with FNA ± CT; manage per oncology. No achalasia therapy yet. PubMed+1
- 45-year-old on long-term oxycodone; HRM: EGJOO; TBE borderline.
 Plan: Opioid taper → repeat HRM/TBE/FLIP; many normalize. Refrain from myotomy unless obstruction persists with convergent evidence. Mayo Clinic
- Systemic sclerosis; HRM: absent contractility, low LES; peptic stricture.
 Plan: High-dose PPI + staged dilations; consider partial wrap only in select refractory GERD at expert center. CGH Journal+1
- Bolivian immigrant with megaesophagus; HRM: achalasia Type I.
 Plan: Treat as achalasia; POEM or LHM reasonable; counsel on reflux post-therapy. PMC
- Post-Nissen patient, late dysphagia; HRM: elevated IRP, preserved peristalsis.
 Plan: EGD/barium to define anatomy → dilation if appropriate; if wrap is slipped/over-tight, surgical revision. CGH Journal+1

One-page takeaway

- Before cutting an LES, ask: cancer? surgery/device? opioids? scleroderma? Chagas?
- Pseudoachalasia: use the red-flag quartet to trigger EUS/CT; treat the cause. PubMed
- Scleroderma: PPI + dilation; avoid myotomy for absent contractility. CGH Journal
- OIED: taper opioids → retest; patterns can disappear. Mayo Clinic
- Chagas: treat like idiopathic achalasia; POEM/LHM/PD are on the table; plan reflux control. PMC
- Post-fundoplication: fix the mechanics (dilate or revise), don't reflexively myotomize. CGH Journal

Next up — Module 11: Functional esophageal disorders. We'll separate functional heartburn, reflux hypersensitivity, functional chest pain, functional dysphagia, and globus, and build scripts for neuromodulators, behavioral therapy, and how to avoid iatrogenesis.

You said:

Next

ChatGPT said:

Request for GPT-5 Pro

Reasoned for 5m 9s

Module 11 — Functional esophageal disorders (brain-gut, not acid-pipe)

We'll separate signal from static: diagnose with Rome IV logic, use tests to *exclude* structural/motility disease, then treat with neuromodulators and brain–gut tools instead of scalpels and stents.

Learning objectives

By the end you can:

- Apply Rome IV definitions for the five functional esophageal disorders and their cousins (belching/rumination). PMC
- Run a minimal-waste evaluation: who needs EGD/biopsies, HRM, pH-impedance, ENT exam—and who doesn't. Giboard Review+1
- 3. Treat with **neuromodulators + behavioral therapies** (CBT, hypnotherapy, speech therapy, diaphragmatic breathing) and avoid harmful "anti-reflux heroics." PubMed+2ScienceDirect+2

A) What counts as "functional" (Rome IV)

Symptoms arise **without** structural disease, mucosal inflammation, or a **major** motility disorder. Core entities:

• Functional chest pain (FCP)

- Functional heartburn (FH)
- Reflux hypersensitivity (RH)
- · Functional dysphagia (FDys)
- Globus

Belching disorders (excessive supragastric vs gastric belching) and rumination syndrome are closely allied disorders of gut-brain interaction; diagnosis hinges on impedance and careful history. PMC+1

Short diagnostic "tags" (Rome IV):

- FH: heartburn with normal endoscopy, normal acid exposure, negative symptom association, and no major motility disorder. Giboard Review
- RH: heartburn/chest pain with normal acid exposure but positive symptom association (pH-impedance). JNM Journal
- FCP: retrosternal pain, cardiac causes excluded, no structural/motility disease; heightened esophageal pain processing is key. PMC
- FDys: sensation of food "sticking" without structural disease or major motility disorder. MDCalc
- Globus: non-painful lump sensation in the throat, between meals, no structural lesion. PMC

B) Evaluation: rule out the wrong stuff, don't go fishing

Step 1 — Basic anatomic/mucosal check: EGD with biopsies when symptoms are persistent/significant to exclude esophagitis, EoE, rings/strictures, cancer; use HRM only to exclude major motility disorders (achalasia, spasm, jackhammer, absent contractility). Giboard Review

Step 2 — Physiology only if it changes management:

- Heartburn/regurgitation phenotyping: off-therapy pH or pH-impedance to separate GERD vs FH vs
 RH (Lyon thresholds from earlier: AET >6% conclusive GERD; <4% all days argues against). PubMed
- Belching/rumination: impedance (±HRIM) to prove supragastric belches and rumination events; therapy is behavioral, so measurement should guide it. <u>American Gastroenterological Association</u>
- Globus: add ENT nasolaryngoscopy once to exclude a pharyngeal lesion; GI testing is otherwise
 conservative unless alarm features exist. PMC

What not to do: anti-reflux surgery/endoluminal procedures in functional heartburn or unproven GERD—outcomes are poor. ScienceDirect

C) Treatment playbook (condition-by-condition)

1) Functional heartburn (FH)

- Explain the model (central sensitization, hypervigilance); stop PPI if GERD is objectively excluded.
- Neuromodulators: low-dose TCAs (e.g., amitriptyline 10–25 mg qHS, titrate), SSRIs/SNRIs, or gabapentinoids for pain modulation. PMC
- Behavioral therapies: gut-directed hypnotherapy, CBT, diaphragmatic breathing/relaxation—recommended when hypervigilance or RH-like features coexist. PubMed+1
- Avoid: anti-reflux surgery/endoscopic GERD procedures. ScienceDirect

2) Reflux hypersensitivity (RH)

 Same behavioral + neuromodulator toolkit; consider a limited PPI trial only if acid-provoked symptoms are clear, but acid exposure is normal by definition. JNM Journal

3) Functional chest pain (FCP)

 First, exclude cardiac causes. Then treat with neuromodulators (low-dose TCA/SSRI/SNRI) ± behavioral therapy; smooth-muscle agents help only if a spastic motility pattern actually exists (then it's not "functional"). PMC

4) Functional dysphagia (FDys)

 Reassure and retrain: mindful eating, bolus-texture strategies; treat co-existing anxiety. Small trials support neuromodulators when pain sensitivity dominates. Keep dilation/surgery off the table unless a new structural cause appears. <u>Annals of Esophagus</u>

5) Globus

Reassurance + speech-voice therapy techniques; address dryness, postnasal drip, and stress. PPIs
have weak evidence unless GERD is proven; use time-limited trials only with suggestive features.
PMC

6) Belching disorders & rumination (behavior first)

- Supragastric belching (SGB): diagnosis by impedance; speech therapy/CBT with diaphragmatic breathing is first-line and effective in cohorts and a randomized study; central neuromodulators can support refractory cases. <u>American Gastroenterological Association+2PubMed+2</u>
- Rumination syndrome: post-prandial diaphragmatic breathing is the cornerstone; structured CBT variants help when breathing alone underperforms. <u>CGH Journal+1</u>
 Practical referral: partner with SLPs/psychologists who know <u>SGB/rumination protocols</u>—outcomes hinge on skilled coaching. <u>American Gastroenterological Association</u>

D) Quick algorithms (clipboard-ready)

Heartburn path (unproven GERD): EGD (\pm biopsies) \rightarrow pH-impedance off PPI \rightarrow

• **AET >6%** ⇒ GERD care (Module 4).

- AEI <4% + negative association ⇒ FH → neuromodulator + penavioral therapy; avoid surgery.
- AET normal + positive association \Rightarrow RH \Rightarrow neuromodulator + behavioral therapy. PubMed+1

Belching/Regurgitation path: If frequent belching/regurgitation → **impedance (±HRIM)** → SGB or rumination confirmed → **speech/behavioral therapy + diaphragmatic breathing**; baclofen is a back-up for refractory **gastric** belching, not SGB. American Gastroenterological Association

Globus path: ENT laryngoscopy once \rightarrow if benign exam and no alarms \rightarrow reassure + voice/speech therapy; reserve GI testing for atypical/red-flag features. PMC

Numbers & thresholds that matter

- Rome IV cadence: symptoms weekly for ≥3 mo, onset ≥6 mo prior for most esophageal DGBI. PMC
- Lyon 2.0 guardrails (for phenotyping): AET >6% conclusive GERD; AET <4% (all days) argues against; symptom association adjudicates RH. <u>PubMed</u>
- Belching diagnostics: impedance distinguishes supragastric vs gastric; therapy differs. <u>American</u>
 Gastroenterological Association

Pitfalls & board-style traps

- Operating on functional heartburn or RH—procedures won't fix central sensitization. ScienceDirect
- Calling SGB "GERD air" and maxing out PPIs; prove SGB with impedance and send to speech/behavioral therapy. American Gastroenterological Association
- Treating FCP like spasm without evidence; use neuromodulators/behavioral therapy unless HRM shows a spastic disorder. PMC
- Forgetting ENT in globus; one laryngoscopy protects you from missing a rare pharyngeal lesion. PMC

10-minute drill (mini-cases)

- Heartburn x 2 years; EGD normal; 96-h wireless pH off PPI: AET 2.1-3.8% all days, negative symptom indices.
 - Dx: Functional heartburn. Rx: TCA at bedtime ± CBT/hypnosis; stop chasing acid; no anti-reflux surgery. Giboard Review+2PubMed+2
- 2. Weekly chest pain after stress; cardiology negative; manometry normal; pH-impedance normal AET, positive SAP.
 - **Dx**: **Reflux hypersensitivity** (acid-triggered). **Rx**: neuromodulator + CBT/relaxation; consider short PPI only if clear acid-trigger pattern. <u>JNM Journal</u>
- Constant belching + visible "air sucking"; impedance: repetitive supragastric belches.
 Rx: Speech therapy with awareness training + diaphragmatic breathing; add neuromodulator if refractory. PubMed+1
- Post-prandial effortless regurgitation; HRIM shows abdominal strain → retrograde flow.
 Dx: Rumination. Rx: post-prandial diaphragmatic breathing ± CBT add-ons if persistent. CGH Journal
- 5. Globus for 8 months; ENT normal; no alarms.
 - **Plan**: Reassurance, voice/speech therapy techniques, hydration/saliva support; defer GI testing unless the story changes. PMC

One-page takeaway

- Diagnose with Rome IV + tests that exclude structural/motility disease; phenotype heartburn with pH-impedance to sort GERD vs FH vs RH. PMC+1
- Treat FH, RH, FCP, FDys, globus with neuromodulators + behavioral therapies (CBT/hypnosis/diaphragmatic breathing/speech therapy). PubMed
- SGB/rumination are behavioral: prove them with impedance and send to skilled therapy; medications play a supporting role. American Gastroenterological Association
- Don't cut: anti-reflux procedures are contra-helpful in FH/RH. ScienceDirect

Next up — **Module 12: Strictures, rings, and webs.** We'll build a dilation strategy (bougie vs balloon), choose steroid/mitomycin-C/stent wisely, and design recurrence prevention that sticks.

You said:

Next

ChatGPT said:

Request for GPT-5 Pro

Reasoned for 6m 15s

Module 12 — Benign esophageal strictures, rings & webs

Gastroenterologist-level review with pragmatic, procedure-ready detail

What you'll be able to do after this module

- Triage dysphagia from benign narrowing vs alternative etiologies, choose the right imaging/biopsy strategy, and plan safe dilation.
- Select between bougie and balloon dilation (and know when each shines), set target diameters, and pace the up-sizes rationally.
- Prevent recurrence by treating the cause (GERD/EoE/caustic/radiation/anastomotic/ER-related), and escalate skillfully for refractory disease (steroids, stricturotomy, stents, self-dilation, surgery). PMC+1

Key ideas (fast)

- Biopsy first, dilate second. Obtain biopsies from all strictures to exclude malignancy and EoE; image
 if appearances are atypical. PMC
- Bougie vs balloon: clinical outcomes and perforation risk are similar; balloons cause less
 post-procedure pain. Choose based on anatomy and operator comfort. PMC
- Pacing the dilation: start tight strictures at 10–12 mm (≤9 mm for filiform), then no more than ~3 size increments per session is reasonable—especially with blind bougies. Data suggest the classic "rule of 3" is conservative and can be individualized under direct visualization. BSG+1
- Treat the cause to prevent the redo. PPIs for peptic strictures; anti-inflammatory therapy for EoE; timed dilation after caustic injury; caution and fluoroscopy for radiation. <u>Gut+3www.asge.org+3PMC+3</u>
- Refractory strictures: inability to reach 14 mm after ≥5 sessions (≈q2 wk) or maintain ≥14 mm for ≥ 4 wk after reaching it. That's your signal to add intralesional steroids, perform endoscopic incision/stricturotomy, consider temporary stenting, or teach selected patients self-bougienage. GIE Journal+1

1) Etiologies & phenotypes (what you're dilating)

- Peptic (GERD) strictures—distal, short; often with hiatal hernia. Recurs without aggressive acid suppression. www.asge.org
- Schatzki ring (B-ring)—mucosal ring at the SCJ; dysphagia/FB sensation, often with 12–13 mm tablet hang-up. www.asge.org
- Cervical webs—thin, mostly anterior; think Plummer-Vinson (iron deficiency + web + dysphagia) and a small ↑ risk of head/neck or proximal esophageal SCC. <u>BioMed Central</u>
- EoE fibrostenosis—long, narrow, "trachealized" esophagus; dilation is safe and helpful with anti-inflammatory therapy. PMC
- Caustic injury—often long, complex, multiple strictures; higher perforation risk. PMC
- Radiation/anastomotic/post-ER/ESD—complex, angulated, proximal; high recurrence; consider adjuncts early. PMC+1

2) Work-up before you dilate

- Endoscopy with biopsies from the stricture and proximal/mid esophagus when EoE is suspected.
 Repeat biopsies/CT/EUS if cancer is still on the table. PMC
- Contrast study (barium) for suspected complex strictures (caustic, radiation, long/angulated) to map location/length/diameter/number. PMC
- Peri-procedural risk: dilation is "higher-risk" among routine endoscopic interventions; plan sedation
 and equipment accordingly; use wire guidance/fluoroscopy for complex cases. PMC

3) Dilation toolkit & technique (the "how")

Device choice

- Bougie (Savary/Maloney): radial and axial force; tactile feedback; reusable; great for short, straight "simple" strictures.
- Balloon (TTS/OTW): pure radial force under direct vision; ideal when you want precision, in rings/webs, or through tortuous segments. Outcomes are equivalent; balloons = less pain. www.asge.org+1

Sizing strategy

- Very tight/filiform: **start 10–12 mm** (≤9 mm if a filiform), then **gradual** upsizing. <u>BSG</u>
- Classic "rule of 3" (≤3 sequential bougies per session) remains a conservative safety heuristic with blind bougies; newer data show no clear increase in AEs when individualized under visualization.
 BSG+1
- Balloon inflation: typically 30-60 s per diameter step, watching the waist give. www.asge.org

Targets

 Eat solids: most adults need ≥14–16 mm. For EoE and rings, the durable goal is often 16–18 mm (may require staged sessions). Gastro Journal+1

Aftercare

Observe for chest pain, subcutaneous emphysema, fever/tachycardia. Diet advance as tolerated.
 Provide written warning signs. (Guideline aftercare section.) PMC

Antibiotic prophylaxis?

Not to prevent endocarditis—even though bacteremia is relatively common with dilation. AHA/ASGE do **not** recommend routine IE prophylaxis for GI endoscopy; manage antibiotics only for specific local-infection scenarios (e.g., ERCP with incomplete drainage) or per local high-risk cardiac guidance.

4) Etiology-specific management pearls

A) Peptic (GERD) strictures

 Dilate as per technique above and place the patient on high-dose PPI to reduce recurrence; failure to control acid = repeat dilations. Consider antireflux surgery selectively. www.asge.org

_. _

B) Schatzki ring

Single session, graded to 16–20 mm is recommended; the goal is to fracture the ring. Start PPI after
dilation to lower relapse risk. Consider EoE biopsies if symptoms or endoscopic clues. Electrosurgical
incision (radial cuts) is an effective alternative, sometimes with longer remission. PMC

C) Esophageal webs & Plummer-Vinson syndrome

Check iron studies; iron repletion often improves dysphagia; residual symptomatic webs rupture
easily with gentle dilation (bougie or balloon). Recognize the small but real SCC risk in the
hypopharynx/proximal esophagus; keep surveillance individualized. BioMed Central

D) EoE fibrostenosis

Dilation is safe (perforation ≈0.03%) and effective. Aim for 16–18 mm over 1–several sessions.
 Always pair with anti-inflammatory therapy (dietary elimination and/or topical steroids/biologics) for durability. Expect mucosal tears and post-procedural chest pain; that's part of the therapy. PMC+

E) Caustic strictures

Timing matters: do diagnostic endoscopy within 12–48 h when safe; avoid the friable window days 5–15; begin endoscopic dilation ~3–6 weeks after ingestion when tissue stability returns. Expect higher perforation risk and need for repeated sessions. PMC+1

F) Post-radiation strictures

Often present weeks-months after therapy; proximal/pharyngoesophageal; higher risk—use
guidewires/fluoroscopy liberally; anticipate recurrence and consider early adjuncts or combined
antegrade-retrograde approaches if near-complete occlusion. PMC+1

G) Anastomotic & post-ER/ESD strictures

High recurrence; combine dilation with intralesional triamcinolone (see below) or endoscopic incisional therapy (stricturotomy/RIC) for short, fibrotic rings. After large-circumference ESD, steroid prophylaxis (oral and/or local) is guideline-supported to reduce stricture formation; tissue-shielding (PGA sheets) is used in high-risk resections. E-CE+1

5) Refractory & recurrent benign esophageal strictures (RBES)

Definitions (Kochman criteria)

- Refractory: cannot reach 14 mm over ≥5 dilations at ~2-week intervals.
- Recurrent: cannot maintain ≥14 mm for ≥4 weeks after achieving it.
 Use these to trigger step-up therapy. GIE Journal+1

Step-up options (often combined):

1. Intralesional steroids

 Triamcinolone 40–80 mg total injected in 4 quadrants immediately after dilation can reduce re-stenosis, particularly in peptic/anastomotic strictures. Evidence is mixed across etiologies but favored in peptic disease. Gastroenterology and Hepatology

2. Topical or injected mitomycin-C (MMC)

 Off-label antifibrotic adjunct; commonly 0.4 mg/mL applied/injected circumferentially after dilation. Small studies suggest fewer repeat dilations; watch for pain/ulceration with higher doses. Consider in refractory postoperative/caustic strictures when steroids fail. PMC+1

3. Endoscopic incisional therapy (stricturotomy/RIC)

Radial needle-knife or IT-knife cuts through the fibrotic ring; especially effective for short
 (<1-2 cm) anastomotic strictures and Schatzki rings with recurrence. Practical Gastro+1

4. Temporary stenting

Prefer fully covered SEMS for RBES; leave 6–8 weeks (max 10–12) to promote remodeling and minimize embedment; migration is the Achilles' heel. Biodegradable stents are an option; long-term clinical success is modest (~25–50%). Reserve stents for strictures failing the above. Esge+2

5. Self-dilation (home bougienage)

For motivated patients with short proximal anastomotic/radiation strictures, daily/alternate-day self-dilation (to 14–16 mm) can **dramatically** reduce procedures with good safety. Requires careful training and follow-up. PMC+1

6. Surgery

o For highly refractory, long, or multiply recurrent strictures despite optimal endoscopic care.

6) Complications, prevention & risk management

- Perforation (globally ~0.1–0.4% for benign dilation; higher in caustic/radiation/complex, and with
 rigid escalation). Use guidewires/fluoroscopy in high-risk anatomy; escalate diameters in stages; stop
 if deep tears, significant pain, hypotension, or subcutaneous emphysema. PMC
- Bacteremia is common with dilation, but routine IE prophylaxis is not recommended. Focus on standard endoscopy infection control; follow AHA/ASGE for rare high-risk cardiac scenarios. www.asge.org
- Antithrombotics: treat dilation as a high-risk endoscopic procedure; follow national guidance (e.g., BSG/NICE) to manage DOACs/warfarin/antiplatelets. PMC

7) Quick reference (targets, intervals, and meds)

- Simple strictures: most need 1–3 sessions, max ≤5 in >95%. Target ≥15–16 mm with symptom relief.
 PMC
- Schatzki ring: single session to 16–20 mm + PPI thereafter; consider incisional therapy if recurrent.
- EoE fibrostenosis: aim 16-18 mm over 1-several sessions + anti-inflammatory EoE therapy. PMC
- Peptic strictures: PPI long-term to reduce recurrence. www.asge.org
- Caustic/radiation/anastomotic: expect more sessions; consider early adjuncts (steroids, incision, stents). Gut

8) Pitfalls to dodge

- Dilating before basic biopsies/imaging in an atypical or ulcerated stricture. (You'll miss cancer.) PMC
- Treating a Schatzki ring without PPIs; relapse loves acid. BSG
- Over-honoring the "rule of 3" when you have direct visualization and a cooperative stricture—you
 can individualize safely. PubMed
- Dismissing EoE in adults with rings, food impactions, or "trachealization"—biopsy widely. PMC

References you can lean on in clinic

- UK/BSG guideline on esophageal dilatation (2018)—the most procedure-practical single source; covers prep, technique, aftercare, and disease-specific tips. PMC
- ASGE dysphagia & dilation technique primer (2014)—nuts-and-bolts of bougies/balloons and peptic stricture care. www.asge.org
- ASGE antibiotic prophylaxis (2015)—why we don't give IE prophylaxis for dilation. www.asge.org
- ESGE stenting guideline (2021)—if you're considering FCSEMS/BDS for RBES, this is your dwell-time playbook. Esge
- EoE dilation meta-analysis (2017)—reassuringly low perforation rate; informs target diameters. PMC
- Bougie vs balloon meta-analysis (2018)—equivalent efficacy/safety; balloons hurt less. PMC
- Kochman definition of RBES (2005)—the language we use to decide when to escalate. GIE Journal

If you're ready, we'll roll into Module 13 — Esophageal perforation & fistulas (iatrogenic, spontaneous, and malignant): recognition, stabilization, and endoscopic/surgical management.

You said:

Next
ChatGPT said:

Request for GPT-5 Pro

Reasoned for 7m 1s

Module 13 — Esophageal perforation & fistulas (triage fast, fix smart)

When the esophagus leaks, the mediastinum turns into a hostile swamp. Speed and physics win: control sepsis, divert flow, close the hole, drain the cesspool, feed distally. Let's make it procedural.

What you'll master

- Rapid recognition + **first-hour bundle** for suspected perforation (iatrogenic or Boerhaave) and which test to order first. BioMed Central
- Who qualifies for non-operative management (NOM) vs who needs primary repair or endoscopic closure (clips/OTSC, stent, or vacuum therapy). <u>BioMed Central+1</u>
- Pragmatic care pathways for malignant/benign tracheoesophageal fistula (TEF) and aortoesophageal fistula (AEF)—airway first, then durable palliation or surgical plans. <u>Current</u> <u>Challenges in Thoracic Surgery+2Karger Publishers+2</u>
- The near-miss cousins: Mallory-Weiss tears and intramural esophageal hematoma—how to treat
 and, crucially, when to do nothing. cag-acg.org

The first 10 minutes (clipboard)

- 1. Airway, breathing, circulation. Two large-bore IVs, broad-spectrum IV antibiotics covering aerobes/anaerobes; NPO; IV PPI. Place NG tube if pursuing NOM or decompression under endoscopic/fluoro guidance (avoid blind placement across a fresh tear). Early nutrition plan (nasojejunal/jejunostomy) improves healing. BioMed Central
- Imaging: Contrast-enhanced CT chest/abdomen (with oral water-soluble contrast if feasible) has largely displaced first-line esophagram—better anatomy, collections, and complications; classic esophagram can miss up to ~30% of small perforations. BioMed Central
- Call thoracic surgery/interventional radiology early; even "endoscopic wins" need drainage and surgical backup. BioMed Central

A) Classifying perforation: the forks in the road

- latrogenic (dilation, ER/ESD, POEM, TEE, airway procedures) vs spontaneous (Boerhaave) vs trauma.
- Timing matters: <24 h to therapy beats >24 h by a lot (mortality <10% vs ~30% across series).
 BioMed Central

Who gets non-operative management (NOM)?

Pablic code and individual discussion with minimal contamination and tinks around manifestion (Dittalo work

Stable, early, **contained** disruption with **minimal contamination**, and tight, expert monitoring (Pittsburgh score ≤2 is supportive). Keep NPO, **broad-spectrum antibiotics**, early enteral/TPN, NG decompression, and **aggressive image-guided drainage** of collections. Any deterioration → **repeat CT** and escalate. BioMed Central

B) Endoscopic closure: size, edges, and sepsis drive the tool choice

ESGE 2020 rule-of-thumb (iatrogenic perforations):

- TTS clips for <10 mm defects.
- OTSC (over-the-scope) for >10 mm (and good tissue to grasp).
- Fully covered SEMS for larger (~>20 mm) or friable edges, often with drainage. Esge

Practical knobs to turn

Use CO₂, keep insufflation minimal; close over a guidewire/NG if possible. Pair closure with
pleural/mediastinal drainage when there's contamination. Typical stent dwell ~2–4 weeks to seal;
fix stents to reduce migration. BioMed Central+1

Endoscopic vacuum therapy (EVT)

Sponge in cavity → continuous suction; exchange every 3–4 days until closure. Meta-analyses suggest higher healing vs stents for leaks/perforations in selected series. Great with collections and septic fields, often alongside percutaneous drains. AOE
 Synthesis: contain and drain the dirty space, then pick clips/OTSC for small, stent for big/elongated or friable, EVT for cavity/contamination—often combined.

C) Boerhaave syndrome (post-emetic, left posterolateral distal tear)

Clues: chest pain after vomiting ± subcutaneous emphysema; Mackler's triad is classic but uncommon. CT defines the battlefield (air/fluid, side, extent). Water-soluble esophagram is helpful but can be false-negative; if still suspicious, repeat with barium or proceed with CT-guided management. Early repair saves lives. NCBI+1

Management

Early (<24 h) operative repair with debridement, buttressed primary closure, and wide drainage has
the best survival; delayed cases may still be operable but success falls. NOM is select (contained leak,
minimal sepsis) under expert surveillance—often with endoscopic therapy + drainage. BioMed
Central

D) Tracheoesophageal fistula (TEF)—malignant vs benign

Malignant TEF / esophagorespiratory fistula

- Goals: prevent aspiration, restore ingestion, reduce pneumonia. In airway-threatening lesions, many
 centers place a tracheobronchial stent first, then esophageal stent ("double stenting") to avoid
 airway compression. Evidence and practice vary, but airway-first is common when the lumen is
 compromised. Current Challenges in Thoracic Surgery+1
- Stents improve quality of life and survival vs conservative care in cohorts; manage infection and nutrition in parallel. Karger Publishers

Benign TEF (post-intubation, cuff injury, post-surgery)

 Favor surgical repair in good candidates; endoscopic options (OTSC, septal occluders, fibrin, customized stents) are bridges or for non-operative patients. Multidisciplinary airway + GI care is mandatory. aabronchology.org+1

E) Aortoesophageal fistula (AEF)—the don't-blink catastrophe

Pattern: thoracic pain + sentinel hematemesis → quiescence → exsanguination. Often after TEVAR/aortic graft or esophageal cancer. Do not spend time on routine endoscopy if the patient is unstable. Temporize bleeding (Sengstaken-Blakemore or large esophageal balloon) while activating massive transfusion and aortic control (TEVAR); definitive esophageal repair/eradication follows. PMC+1

F) Near-miss injuries

1) Mallory-Weiss tear (MWT)-mucosal laceration at the EGJ

- Most stop spontaneously. If actively bleeding, guideline-based endoscopic therapy favors banding or TTSC rather than epinephrine injection alone; if no active bleeding (visible vessel/clot only), withhold endoscopic hemostasis. cag-acg.org
- Manage as NVUGIB otherwise (restrictive transfusion, prokinetic if needed, early endoscopy).
 PubMed

2) Intramural esophageal hematoma / dissection

Presents with chest pain, odynophagia, dysphagia, sometimes hematemesis; CT/endoscopy shows
bluish submucosal bulge or double lumen. Conservative care is standard: NPO → soft diet,
analgesia, reverse anticoagulation if present; surgery/endoscopy is rarely needed. Expect resolution
in 2-4 weeks. Lippincott+1

G) Foreign bodies & food bolus—avoid iatrogenic perforation while you save the day

Buttons batteries, multiple magnets, sharp objects: urgent removal; gentle "push technique" is
acceptable for food bolus with caution and readiness to retrieve. Keep overtube/cap and accessory
snares/nets on hand; consider airway protection for high-risk objects. Essge

Numbers & thresholds you should remember

- Therapy inside 24 h for perforation → mortality often <10%; after 24 h it climbs toward ~30%.
 BioMed Central
- NOM criteria: stable, contained leak, minimal sepsis, expert monitoring; use Pittsburgh score ≤2 as supportive. BioMed Central
- Endoscopic device sizing: TTS <10 mm, OTSC >10 mm, stent ≥20 mm/friable edges. Esge
- Stent dwell: plan ~2–4 weeks (individualize with imaging/endoscopy). BioMed Central
- EVT: sponge exchange every 3–4 days; high healing rates in series. AOE
- MWT: treat active bleeding with band/clip; avoid routine therapy without active bleeding. cag-acg.org

Pitfalls that bite

- Ordering only a water-soluble swallow and stopping after a negative test; CT is your friend and often first-line. BioMed Central
- Closing a perforation endoscopically but not draining collections—patients fail from sepsis, not from the clip. BioMed Central
- Stenting a malignant TEF without thinking about the airway; consider tracheobronchial stent first
 when airflow is endangered. Current Challenges in Thoracic Surgery
- Spraying epinephrine alone on a spurting MWT; mechanical therapy is superior. cag-acg.org
- Missing AEF after sentinel bleed—GI maneuvers won't save a rupturing aorta. Activate TEVAR. PMC

10-minute drills (mini-cases)

- Post-dilation chest pain, subQ emphysema; CT shows small peri-esophageal air, no big collection;
 8-mm defect at 28 cm.
 - Plan: Endoscopic OTSC or multiple TTS clips depending on edges; CO₂, NG across the repair, IV antibiotics, NPO, and CT-guided drainage only if collections appear. Early nutrition. Esge+1
- Vomiting → chest pain; CT: left pleural effusion + mediastinal air; leukocytosis, mild hypotension.
 Plan: OR now for debridement + primary repair + drainage; consider adjunct stent if tissue tenuous; broad antibiotics, tube feeding access. <24 h rule applies. BioMed Central
- Esophageal SCC with coughing on liquids; bronchoscopy shows airway erosion.
 Plan: Airway stent first (symptomatic relief, aspiration prevention) → esophageal stent if needed for seal; treat infections and support nutrition. Karger Publishers+1
- 4. Sentinel hematemesis + back pain, h/o TEVAR.
 - **Plan: Massive transfusion**, consider **esophageal balloon** tamponade as a bridge, emergent **CTA** and **TEVAR**; definitive esophageal control after aortic hemostasis. PMC
- 5. MWT oozing at EGJ.
 - **Plan: Clip or band**; avoid epinephrine monotherapy; discharge planning per NVUGIB risk profile. cag-acg.org
- 6. Severe chest pain after retching; CT: intramural hematoma.
 - Plan: Conservative: NPO → advance diet, analgesia, PPI, correct coagulopathy; follow-up imaging; expect resolution in weeks. Lippincott

One-page takeaway

- Use CT early; decide NOM vs repair by stability, containment, contamination, not vibes. <u>BioMed</u> Central
- For iatrogenic perforations: TTS/OTSC/stent by size and tissue; drain what's dirty; EVT excels when a
 cavity needs granulation and suction. Esge+1
- Boerhaave needs rapid source control; time is hemodynamics. BioMed Central
- Malignant TEF: protect the airway and aspiration risk first; stent strategy follows. <u>Current Challenges</u> in Thoracic Surgery
- MWT/IEH: most don't need heroics; treat actively bleeding MWT mechanically, and let hematomas
 rest and reabsorb. cag-acg.org+1

Next up — Module 14: Barrett's esophagus & early neoplasia. We'll tune surveillance to risk, grade dysplasia without losing our minds, and run an EMR/ESD + ablation playbook that maximizes cure and minimizes strictures.

You said:

Next

Request for GPT-5 Pro

Reasoned for 6m 7s

Module 14 — Esophageal diverticula (Zenker, Killian–Jamieson, mid-esophageal traction, epiphrenic)
Pocket-making pouches with different physics. We'll map the anatomy, pick the right tests, and choose between flexible endoscopic septotomy, tunneling (Z-POEM/D-POEM), rigid stapling, and surgery—without giving the recurrent laryngeal nerve or the mediastinum a bad day.

Learning objectives

By the end you can:

- Recognize diverticulum type by location/anatomy and order the right pre-procedure studies (barium; HRM when distal; ENT input when proximal). PMC
- Choose therapy among flexible endoscopic septotomy, Z-POEM, rigid stapled diverticulotomy, and open/MI surgery, with guardrails for Killian–Jamieson and epiphrenic lesions. PMC+2Esge+2
- Anticipate and prevent complications (airway, leak, RLN injury, recurrence), and plan follow-up. www.asge.org+1

A. Anatomy, pathophysiology & typical patients

Zenker diverticulum (ZD)

Hypopharyngeal pulsion diverticulum through Killian's dehiscence (between the inferior constrictor
and cricopharyngeus), just above the UES. Dysphagia, regurgitation of undigested food, halitosis,
cough/aspiration. Barium swallow is diagnostic; careful EGD because the scope loves to enter the
sac. <u>CGH Journal+1</u>

Killian-Jamieson diverticulum (KJD)

Arises below the cricopharyngeus, anterolateral wall, near the recurrent laryngeal nerve (RLN)—
that proximity drives management caution. Presents like ZD but often smaller; barium + ENT help.
ClinMed Journals+1

Mid-esophageal "traction" diverticulum

 True diverticulum in the mid thorax, classically from mediastinal inflammation/lymphadenitis (e.g., TB, histoplasmosis) pulling outward. Often incidental; treat only if symptomatic/complicated.
 ScienceDirect

Epiphrenic diverticulum (ED)

 Distal esophageal pulsion diverticulum, usually with an underlying motility disorder (achalasia spectrum, DES). Symptoms: dysphagia, regurgitation, chest pain; sometimes aspiration. Work-up must include HRM (Chicago v4.0) and often TBE. PMC

B. Evaluation you actually need

- Barium esophagram defines size, neck, and relation to UES/LES; add tablet hold-up for distal symptoms. (For epiphrenic diverticula, this plus HRM/TBE steers therapy.) PMC
- HRM for epiphrenic lesions to detect achalasia/spasm—myotomy length and whether to do
 diverticulectomy depend on this. PMC
- ENT airway check for large proximal pouches; KJD often co-managed with ENT because of RLN risk.
 ClinMed Journals
- Airway planning: significant ZD/KJD → high aspiration risk. GA with endotracheal intubation is common for rigid or advanced flexible endoscopy; use overtube/cap for safety. (Technique and device guidance in ASGE tech doc.) www.asge.org

C. Treatment principles (one physics rule to rule them all)

Symptoms come from **outflow** resistance at the **sphincter** (cricopharyngeus or LES-adjacent segment). Effective therapy requires **myotomy/septotomy** of that muscle plus creating a common lumen when a pouch is present.

Proximal pouches (ZD, KJD)

Flexible endoscopic septotomy (FESD)

 Divide the party wall (septum) to the diverticulum base → functional myotomy of the cricopharyngeus. High clinical success with acceptable AEs; recurrence usually reflects incomplete myotomy and is often amenable to redo. PMC+1

Tunneling techniques (Z-POEM / Z-POEM-SS)

Submucosal tunnel plus targeted cricopharyngeal myotomy; increasingly used, especially for
recurrent or thick-septum ZD. (ESGE 2020 called tunneling experimental; recent reviews show
promising outcomes and growing adoption.) <u>Esge+1</u>

Rigid endoscopic stapling (ENT)

 Great for large ZD in patients with good neck extension and surgical ENT expertise; rapid and durable in many series. Needs adequate pouch size. CGH Journal

Open transcervical diverticulectomy + cricopharyngeal myotomy

Consider for very large, complex, or recurrent ZD; preferred for many KJD because of RLN proximity—endoscopic cuts risk nerve injury. SpringerOpen+1

KJD specific caution

 Because the sac originates near the RLN, multiple surgical series favor open transcervical diverticulectomy with nerve monitoring over endoscopic septotomy. If an endoscopic route is

Distal pouches (epiphrenic; sometimes large mid-esophageal)

Surgery (minimally invasive where possible)

 Classic triad: diverticulectomy + long esophagomyotomy tailored to HRM + partial fundoplication (reflux control). Thoracoscopic/laparoscopic approaches increasingly used. PMC+1

D-POEM (diverticular POEM)

 Endoscopic tunnel to divide the septum and myotomize the diseased segment. Growing evidence supports efficacy and durability in symptomatic esophageal diverticula, including epiphrenic; still center-dependent. PubMed

When to treat vs watch

 Treat when symptomatic (dysphagia, regurgitation, weight loss, aspiration, halitosis), food stasis/retention, or complications. Observe small, asymptomatic traction diverticula. Jogs+1

D. Outcomes, recurrence, and complications (with realistic numbers)

- Flexible endoscopic ZD therapy: high clinical success with recurrence typically ~5–20% across techniques/series; redo endoscopy is often successful. Bleeding and subcutaneous emphysema are the common AEs; frank perforation is uncommon in experienced hands. PMC+1
- Z-POEM vs FESD: newer comparative reviews/meta-analyses suggest both are effective; Z-POEM
 may reduce recurrence in thick septa but requires tunneling expertise; evidence is still evolving.
 annalsgastro.gr+1
- KJD: endoscopic therapy reported, but RLN injury risk keeps open transcervical favored in many centers. <u>SpringerOpen</u>
- Epiphrenic: surgery with myotomy + partial fundoplication remains standard; minimally invasive
 approaches show good outcomes; D-POEM shows promising symptom and Eckardt score
 improvement in recent series. PMC+1

E. Practical technique notes you'll use

- ZD/KJD (flexible): cap or diverticuloscope, CO₂ insufflation, needle-knife/scissor or stapler-like device; cut to the base to include a cricopharyngeal myotomy; close entry mucosotomy when tunneling (Z-POEM). (See ASGE technical assessment for device and workflow details.) www.asge.org
- Airway: for large pouches or high aspiration risk, intubate; keep suction ready—food stasis is common. www.asge.org
- Epiphrenic: align therapy with HRM—if achalasia/spasm is present, myotomy length must match the
 disease. After surgical myotomy, partial fundoplication mitigates reflux. PMC+1

F. Numbers that matter (clipboard)

- Anatomy: ZD above UES at Killian's dehiscence; KJD below UES, anterolateral near RLN; epiphrenic
 within 10 cm of LES; traction at mid-esophagus from mediastinal inflammation. Medscape+2Wiley-2
 Online Library+2
- Work-up: Barium for all; HRM for epiphrenic lesions; consider ENT for proximal disease. PMC+1
- **ZD endoscopic outcomes**: symptom **recurrence** ~5–20%; redo endoscopy works. <u>PMC+1</u>
- KJD: open transcervical diverticulectomy commonly preferred due to RLN risk with endoscopic cuts.
 SpringerOpen
- Epiphrenic standard: diverticulectomy + long myotomy + partial fundoplication; D-POEM is an
 emerging alternative with encouraging data. <u>PMC+1</u>

G. Pitfalls & board-style traps

- Mistaking KJD for ZD and performing endoscopic septotomy right next to the RLN—that's how
 hoarseness becomes permanent. Map it on barium/CT and involve ENT when in doubt. <u>ClinMed</u>
 Journals+1
- Doing epiphrenic diverticulectomy without a myotomy when motility is abnormal—recurrence/leak risk rises. Treat the motor disorder. PMC
- Skipping HRM in distal disease; you can't plan myotomy length blind. PMC
- Under-cutting the ZD septum (recurrence) or over-cutting into free wall (perforation). Use CO₂, stay in plane, and close mucosotomy in tunneling approaches. www.asge.org
- Operating on small, asymptomatic traction diverticula—watch unless complicated. <u>ScienceDirect</u>

H. 10-minute drill (mini-cases)

- 73-year-old with halitosis, nighttime regurgitation; barium: 3 cm posterior sac above UES.
 Plan: Flexible septotomy or Z-POEM (center expertise). Intubate for airway protection. If septum thick or prior recurrence, tunneling favored. PMC+1
- 68-year-old with dysphonia + dysphagia; barium: small anterolateral sac below UES (left).
 Call: KJD—discuss open transcervical diverticulectomy with ENT; counsel on RLN risk if endoscopic therapy considered. ClinMed Journals+1
- 3. 60-year-old with distal regurgitation; barium: 4 cm epiphrenic pouch; HRM: achalasia type II.

Plan: Diverticulectomy + long myotomy + partial fundoplication (minimally invasive if feasible) or D-POEM in an expert center; plan reflux management either way. PMC+1

Incidental 1.5 cm mid-esophageal traction diverticulum; asymptomatic.
 Plan: Observe; treat only if symptoms/complications develop. <u>ScienceDirect</u>

Recurrent ZD 18 months after FESD; dysphagia back.
 Plan: Repeat FESD or Z-POEM (good salvage data); ensure cricopharyngeal myotomy to base.
 ScienceDirect+1

One-page takeaway

- Name the pouch by anatomy (ZD above UES/posterior; KJD below UES/anterolateral near RLN; traction mid; epiphrenic distal). Barium first; HRM for epiphrenic. Medscape+2Wiley Online Library+
- Treat the physics: myotomy/septotomy + lumen unification. FESD / Z-POEM for ZD (center expertise); open transcervical often for KJD; diverticulectomy + long myotomy + partial fundoplication (or D-POEM) for epiphrenic. PubMed+3PMC+3SpringerOpen+3
- Expect recurrence ~5–20% after endoscopic ZD therapy—redo works. For KJD, respect the RLN. For epiphrenic, don't skip HRM or the myotomy. PMC+1

Next up — **Module 15: Vascular & hemorrhagic lesions.** We'll cover downhill vs portal hypertensive varices, Dieulafoy/angioectasias, banding bundles, and how to manage anticoagulation without losing sleep.

You said:

Next

ChatGPT said:

Request for GPT-5 Pro

Reasoned for 7m 46s

Module 15 — Vascular & hemorrhagic lesions (varices, "downhill," and the odd bleeder)

When blood hits the esophagus, you need a crisp algorithm—not vibes. We'll split **portal-hypertensive** "uphill" varices from SVC-driven "downhill" varices, then cover the rarities (Dieulafoy, angioectasias, hemangioma) with tool-in-hand detail.

Learning goals

- Run the acute esophageal variceal bleed bundle correctly: restrictive transfusion, antibiotics, vasoactives, EVL within ~12 h, and who gets pre-emptive TIPS. Esge+2PubMed+2
- Choose primary/secondary prophylaxis wisely (NSBB—often carvedilol—vs EVL; combo for secondary prevention). <u>Journal of Hepatology+1</u>
- Recognize downhill varices (upper esophagus, SVC problem) so you don't reflexively give portal-hypertension therapies that won't help. PMC+1
- Manage esophageal Dieulafoy lesions/angiodysplasia/hemangioma without perforating anything important. PMC+1

A) Esophageal varices from portal hypertension ("uphill") Acute bleed — the first hour matters

ED bundle (start on suspicion):

- Resuscitation: Restrictive transfusion (Hb ≤7 g/dL threshold; target 7–9) unless major cardiac disease. Esge
- 2. Antibiotics: Ceftriaxone 1 g IV daily (up to 7 days) lowers infections, rebleeding, and mortality; start early. Journal of Hepatology+1
- 3. Vasoactive drug: Octreotide/terlipressin/somatostatin immediately. PubMed
- Endoscopy: EVL (banding) within 12 h once resuscitated. EVL is preferred over sclerotherapy for EV bleeds. Esge+1
- If uncontrolled bleeding: balloon tamponade or fully covered esophageal stent as a bridge to TIPS;
 stents control bleeding better and with fewer serious AEs than balloon devices in failures. PubMed+1

Pre-emptive (early) TIPS: consider within 72 h (ideally <24 h) for Child-Pugh C (<14) or B with active bleeding at endoscopy. It improves failure-to-control/rebleeding in high-risk patients. PubMed Post-EVL PPI? Short courses reduce post-banding ulcer size (and may reduce early rebleeding), but indefinite PPI is not routine unless there's another indication. PubMed+1

After hemostasis — preventing the sequel

- Secondary prophylaxis (standard): NSBB (including carvedilol) plus serial EVL until eradication; this
 combo outperforms either alone. EVL sessions every 1–2 weeks until obliteration, then surveillance
 at 6–12 months. Journal of Hepatology+1
- Primary prophylaxis (no prior bleed): For high-risk varices (medium/large, or small with red-wale marks or Child-Pugh C), choose NSBB or EVL. Modern guidance prefers NSBB—often carvedilol—because of benefits beyond bleeding prevention (lower portal pressure, less decompensation). Use EVL when NSBBs are contraindicated or not tolerated. AASLD+1
- Who can skip screening EGD? Non-invasive Baveno criteria can spare low-risk patients (e.g., platelet >150k and liver stiffness <20 kPa per Baveno VI: refinements in Baveno VII expand NII DA

use). AASLD+1

Numbers clipboard

- Transfuse at Hb ≤7 g/dL (target 7–9). Esge
- Antibiotics: ceftriaxone 1 g IV daily × up to 7 days. Journal of Hepatology
- Endoscopy: ≤12 h; EVL favored. Esge
- Early TIPS: Child C (<14) or Child B + active bleed. PubMed
- Secondary prevention: NSBB + EVL until eradication → scope at 6–12 mo. Journal of Hepatology+1

B) Downhill varices (upper esophagus; SVC pathology)

How to spot them

 Predominantly upper/mid-esophagus (vs distal "uphill" PH varices). History of SVC obstruction (tumor, fibrosing mediastinitis, dialysis/central venous catheters). PMC+1

Management principles

- Treat the SVC problem—angioplasty/stenting/thrombolysis or oncologic therapy—this is the
 "definitive portal decompression" here. TIPS does not help. BioMed Central
- For active bleeding, banding can temporize; once hemostatic, fix the SVC. Routine portal-hypertension bundles (vasoactives/antibiotics) are not the core therapy because the physiology is non-portal. <u>BioMed Central</u>
 Board trap: A patient with proximal varices + a dialysis catheter—don't reflexively start octreotide and book a TIPS. Call IR for the SVC. BioMed Central

C) Odd but important: Dieulafoy, angioectasia, hemangioma of the esophagus

- Dieulafoy lesion (arteriole with a bad attitude)
 - o Presents with brisk bleeding; most in distal esophagus.
 - Endoscopic mechanical therapy works best: hemoclips ± dilute epinephrine injection; banding
 is also effective in series. Thermal alone has higher rebleed than clips. PMC+1
- Angioectasias/AVMs
 - APC (argon plasma) is standard, with clips for visible feeders or as adjunct when oozing is persistent. Use low power/short pulses in the esophagus to limit strictures. PMC+1
- Esophageal hemangioma (rare, submucosal bluish lesion)
 - For symptomatic/bleeding lesions, EMR/ESD can be curative in selected cases. (Case-series level evidence.) Lippincott Journals+1

D) Antithrombotics around EVL (evidence is thin; be deliberate)

- Active variceal bleeding: reverse warfarin with PCC; consider specific DOAC reversal (idarucizumab
 for dabigatran; andexanet for factor-Xa inhibitors) in life-threatening bleeds. Coordinate with
 hepatology/hematology. <u>PubMed</u>
- Resumption: post-bleed data (mostly non-variceal) favor restarting within 3–7 days once hemostasis
 is secure—individualize for thrombosis risk and liver function; severity of liver disease predicts
 post-EVL bleeds more than the exact restart timing. PMC+1
- Elective EVL: follow high-risk endoscopy antithrombotic algorithms (BSG/ESGE/ASGE) for DOAC/VKA holds/bridging. Esge

E) Practical EVL protocol (what you actually do)

- Technique tips: suction each column fully into the cap before firing; avoid banding across ulcers. If view is lost in torrential bleeding, place a Danis (SX-ELLA) stent or tamponade as a bridge to TIPS. PMC+1
- Intervals: repeat EVL every 1–2 weeks until eradication; then EGD 6–12 months for recurrence checks while NSBB continues. www.asge.org

F) Mini-algorithms (clipboard)

Suspected portal-hypertensive variceal bleed

IV access → resuscitate (Hb target 7–9) → ceftriaxone + octreotide/terlipressin → EVL ≤12 h → risk-stratify (Child/MELD, active bleed) → early TIPS if high-risk → secondary prophylaxis: NSBB + EVL. PubMed+3Esge+3Journal of Hepatology+3

"Downhill" variceal bleed

 Upper esophageal varices ± SVC signs → hemostasis (banding) if needed → treat SVC obstruction (stent/lysis/surgery) → no role for TIPS; portal drugs are side-quests. <u>BioMed Central</u>

Esophageal Dieulafoy (non-variceal)

• Clip ± dilute epi (or band) → second-look only if rebleed or uncertainty. PMC

Pitfalls & board-style traps

Skipping antibiotics in cirrhotic variceal bleeding—mortality and rebleeding go up. Start ceftriaxone.
 Journal of Hepatology

- Calling every varix "portal." Proximal varices + dialysis catheter = likely downhill; fix the SVC, not the
 portal tree. BioMed Central
- Sclerotherapy as first-line for EV bleeds—EVL wins on safety and efficacy. Reserve sclero for salvage/adjunct. PMC
- Balloon tamponade forever. It's a bridge, not a destination; SEMS often beats tamponade when EVL fails. PubMed
- Stopping after banding without NSBB for secondary prevention—rebleed city. Use both. <u>Journal of Hepatology</u>

10-minute drills

- 1. Cirrhosis + hematemesis; Hb 6.9; BP stable.
 - Transfuse to 7–9, ceftriaxone + octreotide, EVL now; Child C with active spurting → early TIPS consult. Esge+2Journal of Hepatology+2
- 2. Brisk bleed from proximal varices in a hemodialysis patient with a new neck catheter.
 - Band to temporize, then venography → SVC stent. No TIPS. BioMed Central
- 3. Recurrent EV bleeds post-EVL despite NSBB intolerance.
 - Accelerate EVL schedule to eradication; if high-risk or failure, evaluate for TIPS per guidance.
 PubMed
- 4. Pulsatile esophageal vessel with oozing (Dieulafoy).
 - Clip ± epi (or band). Avoid thermal alone as first-line. PMC

One-page takeaway

- Portal varices: restrictive transfusion, ceftriaxone, vasoactive, EVL ≤12 h, early TIPS when high-risk; for prevention use NSBB (often carvedilol) ± EVL per context. PubMed+3Esge+3Journal of Hepatology+3
- Downhill varices live in the upper esophagus and are SVC problems—band if bleeding, fix the SVC, skip TIPS. <u>BioMed Central</u>
- Rare vascular lesions (Dieulafoy/angioectasia/hemangioma) respond to mechanical endoscopic therapy (clips/band) or APC/EMR/ESD when indicated. PMC+1

Ready to move on? **Module 16** — **Barrett's esophagus & early neoplasia** next: risk-tiered surveillance, dysplasia adjudication, EMR/ESD + ablation sequencing, and how to prevent strictures without under-treating cancer.

You said:

Next

ChatGPT said:

Request for GPT-5 Pro

Reasoned for 5m 29s

Module 16 — Benign & subepithelial tumors of the esophagus (SELs): diagnose smart, cut only when it helps

Cast of characters: **leiomyoma (most common), GIST (rare but consequential), granular cell tumor, lipoma, hemangioma, schwannoma, duplication cyst**—plus the occasional fibrovascular polyp crashing the party.

Learning objectives

By the end you can:

- Run a clean SEL work-up: endoscopic clues → EUS for layer of origin → targeted tissue acquisition only when it changes management. Esge
- Know who to watch vs who to resect (and how): MIAB/FNB, EMR/ESD, STER/EFTR, and when surgical enucleation beats endoscopy. Esge+2SSGE+2
- Recognize lesion-specific fingerprints (IHC, EUS echoes) so you don't overtreat pillow-soft lipomas or undertreat occult GIST. www.asge.org+1

A) Triage & core algorithm (clipboard-ready)

Step 1 — Endoscopy: note size, location, color, mobility, and "pillow sign" (indentable fat). A soft yellow mound with a pillow sign is almost certainly lipoma—biopsy usually unnecessary. www.asge.org+1
Step 2 — EUS (the decider): best tool to confirm intramural vs extrinsic, layer of origin, echogenicity, and risk stigmata (irregular margins, heterogeneity, cystic spaces, ulcer). EUS alone can't name every tumor, but it frames the play. Thieme+1

Step 3 — Tissue? Not always.

- ≥20 mm or suspicious for GIST or will drive oncologic/surgical therapy → EUS-FNB or MIAB (rough tie; both guideline-endorsed). Esge
- <20 mm and you must know → MIAB first (then FNB if needed). Esge
- Clear benign diagnoses (lipoma, classic leiomyoma, heterotopic pancreas, granular cell tumor, schwannoma) do not need surveillance once confirmed. Esge

 $\textbf{Step 4} - \textbf{If still "indeterminate" and low-risk:} \ \texttt{ESGE} \ \texttt{suggests} \ \texttt{surveillance} \ \texttt{cadence} \ \texttt{by size:}$

- <10 mm: EGD at 3-6 mo, then every 2-3 y.</p>
- 10–20 mm: every 1–2 y.

B) The cast, their tells, and what to do

1) Leiomyoma — the workhorse benign mesenchymal tumor

- EUS: hypoechoic, homogeneous, usually from muscularis propria (4th layer); sharp margins.
- IHC: SMA/desmin positive, CD117/DOG1 negative (helps exclude GIST). www.asge.org+2NCBI+2
- Management: observe if confidently benign and asymptomatic; enucleate if symptomatic or large (commonly ≥5 cm); minimally invasive (thoracoscopic/laparoscopic) approaches are standard with excellent outcomes. Endoscopic resection considered only for small, superficial lesions. Medscape+ 2PMC+2

2) GIST (esophageal = rare, but high stakes)

- EUS: often hypoechoic from 4th layer, may show heterogeneity, cystic spaces, irregular borders.
 www.asge.org
- IHC/molecular: KIT (CD117)+, DOG1+ in most; genotype matters (e.g., PDGFRA D842V → imatinib-resistant; avapritinib-sensitive). PMC+1
- Management: if you suspect GIST and size/appearance warrant therapy, get tissue (FNB/MIAB) for histology + mutation testing and discuss at MDT. Oncologic management follows NCCN risk and mutation algorithms (surgery ± imatinib; alternative TKIs for resistance). Esge+2PMC+2

3) Granular cell tumor (GCT)

- EUS: usually submucosal (3rd layer), hypoechoic/heterogeneous, often small and solitary.
- IHC: S-100 positive (Schwann-cell origin). Annals of Thoracic Surgery
- Risk: mostly benign; ~1-3% malignant reported. Lippincott Journals+1
- Management: endoscopic resection (EMR/ESD) is safe and effective for most; tiny asymptomatic (<10 mm) lesions can be surveilled if histology is reassuring. PMC+1

4) Lipoma

- Endoscopy: yellow, soft pillow sign;
- EUS: hyperechoic from submucosa (3rd layer). No surveillance or resection needed when classic. www.asge.org+1

5) Hemangioma / vascular lesions

- EUS: submucosal, vascular channels;
- Management: endoscopic removal (EMR/ESD) is feasible in selected symptomatic cases; otherwise observe. Plan for bleeding control. PMC+1

6) Schwannoma (rare)

- IHC: S-100 positive, smooth-muscle markers negative;
- Management: enucleation (thoracoscopic/robotic) when symptomatic or large; endoscopic removal reported in expert hands. PMC+1

7) Duplication cyst (not a tumor, but a common SEL mimic)

- EUS: anechoic cyst with layered wall;
- Do not stick it: EUS-FNA carries infection risk (≈14%)—reserve FNA for indeterminate cases, ideally
 with prophylaxis. Treat symptomatic cysts definitively (surgical or selected endoscopic approaches).
 PMC+1

One more cameo: Fibrovascular polyp (intraluminal, cervical). Symptomatic polyps are resected (often endoscopically), largely for aspiration risk—not an SEL per se, but it turns up in the benign pile. PMC

C) Tissue acquisition that respects physics

- EUS-FNB vs MIAB: for SELs ≥20 mm, either is recommended (diagnostic yields ~90–95% in meta-analyses); for <20 mm, MIAB first is suggested (then FNB if needed). Esge+1
- When not to biopsy: classic lipoma and duplication cysts (infection risk) don't need it. www.asge.org+1

D) Resection toolbox—choose by depth, size, and local skills

- EMR/ESD: mucosal/submucosal lesions (e.g., many GCTs, small vascular lesions). Mind perforation/bleeding risk in the thin esophageal wall. Amegroups
- STER (submucosal tunneling endoscopic resection): removes muscularis propria tumors (leiomyoma, small GIST) while preserving mucosa; pooled data show high en-bloc success and low serious AEs in expert centers. Igie Journal+1
- EFTR (endoscopic full-thickness resection): for selected wall-based lesions when STER won't do; requires defect closure competence; emerging best-practice guidance from AGA CPU. PubMed
- Surgery (thoracoscopic/laparoscopic enucleation): still first-line for large/symptomatic leiomyomas and many schwannomas; durable with low morbidity in experienced hands. SpringerLink+1
 Sizing reality check (ESGE): for endoscopic full-thickness approaches, practical en-bloc upper limit ≈ 35 mm; beyond that, anatomy and access often favor surgery. Esge

E) Quick reference: fingerprints & actions

		- .		
Lesion	Layer (EUS)	Echo look	IHC	Usual move
Leiomyoma	4th (MP)	Hypoechoic, smooth	SMA/desmin+, KIT-/DOG1-	Observe if clear/asyx; enucleate if symptomatic/≥5 cm
GIST	4th (MP)	Hypoechoic ± heterogeneity/cysts	KIT+/DOG1+	Biopsy for genotype; surgery ± imatinib per NCCN
GCT	2nd–3rd	Hypoechoic	S-100+	EMR/ESD (small) ± observe if <10 mm and proven benign
Lipoma	3rd	Hyperechoic; pillow sign	_	Diagnose visually; no resection/surv
Hemangiom a	2nd-3rd	Vascular channels	_	EMR/ESD if symptomatic; otherwise observe
Schwannom a	4th	Hypoechoic	S-100+	Enucleate (± endoscopic in select centers)
Duplication cyst	2nd–3rd	Anechoic, layered wall	_	Do not FNA (infection); resect if symptomatic

Citations: PMC+7www.asge.org+7NCBI+7

Pitfalls & board-style traps

- Calling every 4th-layer hypoechoic mass a **leiomyoma** without IHC—don't miss a GIST; get tissue when size/appearance/management implications warrant. <u>Esge</u>
- FNA of duplication cysts "just to be sure" → mediastinal infection. Resist the needle unless truly indeterminate. PMC
- Serially "checking" a proven benign lipoma or leiomyoma—**ESGE advises no surveillance** once diagnosis is clear and patient asymptomatic. **Esge**
- Attempting EMR for a deep MP tumor—use STER or send to surgery; respect the wall. Igie Journal

10-minute drill (mini-cases)

- 1. 2.8 cm distal SEL, hypoechoic from 4th layer, heterogeneous with cystic foci.
 - **Move:** EUS-FNB for histology and KIT/PDGFRA; if GIST, MDT for surgery \pm imatinib based on risk/mutation. Esge+1
- 2. 1.1 cm mid-esophageal submucosal lesion, S-100+.
 - **Move:** Endoscopic resection (EMR/ESD) or short-interval surveillance if patient chooses; malignant GCT is rare (~1–3%). PMC+1
- 3. Yellow 8 mm mound with classic pillow sign.
 - Move: Diagnose lipoma; no biopsy or surveillance needed. www.asge.org
- 4. Symptomatic 6 cm mid-esophageal hypoechoic 4th-layer mass, KIT-/DOG1-, SMA+.
 - Move: Thoracoscopic enucleation (leiomyoma). SpringerLink
- 5. Anechoic 2.5 cm cystic SEL with layered wall.
 - Move: Likely duplication cyst—avoid FNA; resect only if symptomatic or complicated. PMC

One-page takeaway

- Start with endoscopic clues, confirm with EUS; take tissue selectively (≥20 mm, GIST-suspect, or decision-changing), preferably FNB or MIAB. Esse
- Leiomyoma → usually observe unless big/symptomatic (enucleate). GIST → biopsy + genotype → oncologic pathway. GCT/lipoma are usually endoscopic/benign. Avoid FNA of duplication cysts.
 PMC+3Medscape+3PMC+3
- Endoscopic resection options map to depth: EMR/ESD (mucosa/submucosa) → STER (muscularis propria) → EFTR selectively; surgery remains premier for large leiomyomas/schwannomas. lgie
 Journal+1

Next: Module 17 — **Esophageal cancer (SCC & adenocarcinoma)**: staging shortcuts that matter, EMR/ESD vs esophagectomy decisions, neoadjuvant frameworks, and building a surveillance plan after endoscopic cure.

You said:

Next

ChatGPT said:

Request for GPT-5 Pro

Reasoned for 9m 45s

 $\label{eq:module 17-Esophageal cancer (SCC \& adenocarcinoma): stage clean, cut smart, treat systemically when biology demands$

Cancer of the esophagus is a game of millimeters and molecules. Depth decides nodes; nodes decide systemic therapy; histology and location swing the neoadjuvant pendulum between chemo, chemoradiation, or (occasionally) definitive CRT. Let's build a high-yield, guideline-anchored playbook.

Learning goals

- Stage correctly (TNM, GEJ rules) and order the **right tests**—what EUS/PET/CT actually answer, and when to resect first for true T staging. PMC+1
- Choose curative endoscopic therapy vs esophagectomy in T1 disease using histology-specific "curative criteria." <u>British Society of Gastroenterology+1</u>
- Map locally advanced therapy: CROSS (carbo-taxol + 41.4 Gy) vs FLOT peri-op chemo—who gets what—and definitive CRT (especially ESCC/cervical). PMC+3New England Journal of Medicine+ 3PubMed+3
- Use modern immunotherapy & biomarkers (PD-L1, HER2, MSI/dMMR, CLDN18.2) for advanced disease and adjuvant nivolumab after neoadjuvant CRT. <u>U.S. Food and Drug Administration+</u> 3PubMed+3PubMed+3

A) Staging & anatomy rules you must not fudge

TNM (AJCC 8):

T1a = lamina propria or muscularis mucosae; T1b = submucosa; T2 = MP; T3 = adventitia; T4a/b = adjacent structures (a = potentially resectable; b = unresectable). PMC+1

GEJ/"Siewert logic" (staging assignment):

Tumors with epicenter within 2 cm of the GEJ and extending to it are staged as esophageal; more
distal than 2 cm is gastric. This matters for both staging tables and peri-operative strategies. PMC+1

Modalities by question:

- CT chest/abdomen/pelvis: anatomic spread, resectability red flags.
- FDG-PET/CT: distant disease + unexpected nodes; lowers futile surgery.
- EUS ± FNA: best local T (≥T2) and nodal characterization; FNA suspicious nodes.
- Caveat for early superficial lesions: if a flat/nodular lesion looks T1 on high-defoscopy, diagnostic ER (EMR/ESD) is preferred to EUS for depth and risk—you need histology, not sonographic guesswork.
 PMC+1

B) Early disease (T1) — curative endoscopy vs surgery Adenocarcinoma (usually distal/GEJ, often on Barrett's)

- Endoscopic cure track: Resect the visible lesion (EMR/ESD) → eradicate residual Barrett (RFA) →
 surveil. ESGE/AGA endorse this as curative for T1a EAC when R0 and no lymphovascular invasion
 (LVI) or poor differentiation. British Society of Gastroenterology+1
- Selected low-risk T1b (sm1 ≤500 μm), well/moderate grade, no LVI: endoscopic therapy can be
 considered with close surveillance if patient and MDT accept nodal risk. British Society of
 Gastroenterology
- Why we fuss about microns: pooled modern data still show meaningful nodal risk escalation going from T1a (~4%) to T1b (~23% overall), magnified by poor grade and LVI. That's why "low-risk sm1" is the exception, not the rule. PubMed

After endoscopic cure of Barrett-related neoplasia: ablate the Barrett segment (usually RFA) and surveil—contemporary guidance now allows year 1 and 3 after CEIM, then revert to non-dysplastic BE intervals (vs older very intensive schedules). Local protocols vary; align with your MDT. Gastrojournal

Squamous cell carcinoma (often mid-proximal)

- Endoscopic cure track (ESD favored) for EP/LPM (m1-m2) and selected MM/sm1 lesions if en-bloc RO, no LVI, good differentiation. Routine pre-ER EUS/CT/PET not required for obvious superficial lesions. Esge
- Why stricter for ESCC: nodal risk climbs fast with depth (historical ranges: m1-m2 ≈0-~2%, m3 ~ 5-20%, sm1 ~9-30%, deeper >40%). "Non-curative" histology (deep sm, LVI, poor grade, vertical margin+) → stage and add surgery or chemoradiation. PMC+1

C) Locally advanced (generally ≥T2 and/or N+) — choose the road by histology & geography

Esophageal/GEJ adenocarcinoma (resectable)

Two validated pathways:

- 1. Neoadjuvant chemoradiation (CROSS) → esophagectomy
 - Carboplatin/paclitaxel + 41.4 Gy, surgery ~4–6 weeks later; long-term OS benefit persists at 10 years. Often preferred when downstaging and margin sterilization matter (e.g., bulky T, borderline nodes). New England Journal of Medicine+1
- 2. Peri-operative chemotherapy (FLOT) (4 pre + 4 post)
 - Docetaxel/oxaliplatin/5-FU/leucovorin improved OS vs ECF/ECX in resectable
 esophagogastric adenocarcinoma and widely adopted for GEJ tumors; recent ESMO 2025
 update leans toward peri-operative chemo as preferred for many locally advanced EAC/OGJ,
 with CRT remaining a valid alternative—individualize by tumor location, histology, stage, and
 team expertise. ScienceDirect+2PMC+2

Esophageal squamous cell carcinoma (resectable)

 Neoadjuvant chemoradiation (CROSS-like) → surgery is common; definitive CRT (no surgery) is standard for cervical ESCC and reasonable for organ-preservation strategies in thoracic ESCC when surgical risk is prohibitive or by MDT choice. PMC

Adjuvant immunotherapy after surgery

If patient received neoadjuvant CRT and R0 resection with residual pathologic disease (yp > T0N0)
 → adjuvant nivolumab for 1 year improves disease-free survival (CheckMate-577). Build this into discharge plans. New England Journal of Medicine

D) Unresectable or metastatic disease — biomarkers drive the menu

Universal testing (adenocarcinoma): PD-L1 (CPS), HER2, MSI/dMMR, and—if GEJ—consider CLDN18.2; these change first-line choices. Annals of Esophagus+1

- ESCC, 1L systemic: Pembrolizumab + platinum/5-FU improves OS (especially CPS ≥ 10), and nivolumab + chemo or nivolumab + ipilimumab are validated options (CheckMate-648). PubMed+1
- EAC/GEJ, 1L:
 - HER2+ → trastuzumab + chemo, with many pathways now adding pembrolizumab when
 CPS ≥ 1 per guideline pathways. T-DXd is a 2L standard after trastuzumab. PMC
 - HER2-, CLDN18.2+ (GEJ) → zolbetuximab + fluoropyrimidine/platinum (FDA-approved for gastric/GEJ; not for non-GEJ esophageal primaries). U.S. Food and Drug Administration
 - o MSI-H/dMMR → PD-1—based regimens favored irrespective of PD-L1. ScienceDirect

Practical tip: documentation of **tumor epicenter (GEJ vs esophagus)** matters—some targeted approvals (e.g., **CLDN18.2**) are **GEJ/gastric-specific**, not "all esophagus." <u>U.S. Food and Drug</u> Administration

E) Palliation of dysphagia (when cure isn't on the table)

- Immediate relief → fully/partially covered SEMS, understanding migration/bleeding trade-offs.
- Longer-lasting relief (when life expectancy >3 months) → (short-course) external-beam RT or brachytherapy; SEMS gives faster relief but RT/BT often delivers more durable dysphagia control with fewer late AEs; combining SEMS → BT/RT is reasonable when you need both speed and durability. Annals of Esophagus+2Annals of Oncology+2

F) Pathology & margins after ER or surgery — what triggers escalation?

- Endoscopic resection deemed non-curative if: deep submucosal invasion, LVI, poor differentiation, or positive vertical margin → complete staging and discuss esophagectomy (fit pts) or CRT. These triggers are mirrored across SCC and EAC (depth thresholds differ). Esge+1
- Post-neoadjuvant surgery with residual disease → adjuvant nivolumab if no contraindication. New England Journal of Medicine

G) Surveillance (after curative intent)

- After EET for Barrett-related neoplasia: contemporary AGA guidance supports year 1 and 3 after CEIM, then NDBE intervals; older schedules (3, 6, 12 mo then yearly) are still used—align with local policy. Gastrojournal
- After curative ESD for superficial ESCC: high-grade recurrences/second primaries cluster in first 2–3 y; many centers scope q6–12 mo, with intensified head-and-neck surveillance for field cancerization. E-CE
- After esophagectomy: oncology-driven imaging/labs; patterns vary (no global, evidence-strong standard), but history/physical and periodic CT for the first 2–3 y is common. PMC

H) Numbers & thresholds to memorize (clipboard)

- T1a vs T1b (lamina propria/muscularis mucosae vs submucosa) drives nodal risk and therapy. PMC
- EAC nodal risk: T1a ~4%; T1b ~23% overall; low-risk sm1 ≤500 μm, G1–2, no LVI may be considered for endoscopic management with close follow-up. PubMed
- CROSS regimen: carboplatin/paclitaxel + 41.4 Gy → surgery, durable OS benefit at 10 y. New England
 Journal of Medicine+1
- Peri-op FLOT: standard for resectable GEJ adenocarcinoma; rising preference in EAC per ESMO 2025 interim update. ScienceDirect+1
- Adjuvant nivolumab after neoadjuvant CRT + R0 with residual disease (stage II/III). New England
 Journal of Medicine
- ESCC first-line metastatic: pembro + chemo (esp. CPS ≥10) or nivo + chemo / nivo + ipi. PubMed+1
- **CLDN18.2** targeting (**zolbetuximab**) is **GEJ/gastric** only—don't misapply to non-GEJ esophageal primaries. U.S. Food and Drug Administration

I) Pitfalls & board-style traps

- Staging the wrong way: doing EUS on every tiny Barrett lesion; for visible superficial neoplasia, do ER for histology instead. Esse
- Forgetting the 2 cm GEJ rule—labeling a distal GEJ tumor "gastric" or "esophageal" incorrectly can

- derail the entire pathway (trial eligibility, drugs, staging). PMC
- Treating every T1b with EET: remember the LVI/grade/depth triad; many T1b need esophagectomy or CRT. <u>PubMed</u>
- Assuming ESCC must be cut: definitive CRT is standard for cervical ESCC and appropriate in selected thoracic disease. PMC
- Deploying CLDN18.2 drugs in non-GEJ esophagus—outside label. U.S. Food and Drug Administration
- Palliation mismatch: short life expectancy but send to RT only—those patients often need SEMS now; conversely, longer expectancy and stent alone may under-deliver. Annals of Esophagus

J) 10-minute drills (mini-cases)

- 2-cm Paris 0-IIa lesion on Barrett, NBI suspicious for HGD/EAC; no ulceration.
 Plan: EMR/ESD for histology/staging → if T1a, R0, no LVI → RFA to eradicate Barrett → surveillance per EET guidance. British Society of Gastroenterology+1
- Flat 12-mm Lugol-voiding lesion mid-esophagus; magnifying endoscopy suggests EP/LPM.
 Plan: ESD without routine pre-ER EUS; if en-bloc R0 m1-m2 and no LVI → curative; schedule ESCC surveillance; counsel on head/neck second primaries. Esge
- 3. Bulky distal EAC cT3N+ (GEJ Siewert II) in fit patient.
 - Plan: Either CROSS → esophagectomy or peri-op FLOT; in many EAC/GEJ, MDTs lean FLOT per latest ESMO update; discuss pros/cons and local expertise. PubMed+1
- 4. Cervical ESCC with dysphagia; imaging cT3N1, no M.
 - **Plan: Definitive CRT** with close response assessment; salvage surgery reserved for persistent/recurrent disease. PMC
- 5. Post-CROSS esophagectomy, R0 but residual ypT2N0.
 - Plan: Adjuvant nivolumab x1 year (no active autoimmune issues). New England Journal of Medicine
- 6. Metastatic ESCC, PD-L1 CPS 12.
 - Plan: Pembrolizumab + platinum/5-FU first-line (or nivolumab + chemo). PubMed+1
- 7. Metastatic GEJ adenocarcinoma, HER2-negative, CLDN18.2+.
 - Plan: Zolbetuximab + FP/oxaliplatin first-line (GEJ indication). U.S. Food and Drug Administration
- Severe dysphagia from obstructing mid-ESCC with limited prognosis.
 Plan: SEMS now for instant relief; consider short-course EBRT if life expectancy >3 months. Annals of Esophagus

One-page takeaway

- Stage with intent: CT + PET/CT for distance; EUS for local nodes/T (≥T2). For superficial lesions, diagnostic ER beats pre-ER EUS. PMC
- T1 disease: EAC T1a → ER + Barrett eradication; low-risk T1b can be endoscopic in select cases; ESCC → ESD for EP/LPM (± MM/sm1) with clear curative criteria; escalate for high-risk histology. British Society of Gastroenterology+1
- Locally advanced: CROSS or FLOT (EAC/GEJ); definitive CRT is standard for cervical ESCC and an
 option in thoracic ESCC. Adjuvant nivolumab after neoadjuvant CRT + surgery with residual disease.
 New England Journal of Medicine+3PubMed+3ScienceDirect+3
- Metastatic: treat by histology + biomarkers (PD-L1, HER2, MSI/dMMR, CLDN18.2 for GEJ). PubMed+ 2PubMed+2
- Palliation: SEMS for immediate relief; RT/BT for durability; combine when you need both speed and staying power. <u>Annals of Esophagus</u>

Next — Module 18: Barrett's esophagus (deep dive "from soup to ablation"). We'll tune risk-tiered surveillance, nail dysplasia adjudication, and build an EET sequence (EMR/ESD \rightarrow RFA) that minimizes strictures while maximizing cure.

You said:

Next

ChatGPT said:

Request for GPT-5 Pro

Reasoned for 6m 59s

Module 18 — Congenital anomalies & extrinsic compression in adults

Some dysphagia isn't an "inside-the-pipe" problem. It's vascular plumbing, spine hardware, or congenital oddities grabbing the esophagus from the outside—or scars from childhood surgery that never fully left. Here's the pattern book and the referral map.

Learning objectives

By the end you can:

- Spot vascular compression (dysphagia lusoria, dysphagia aortica, "megalatriensis") and know when to order CTA/MRA and call vascular or cardiothoracic surgery. PMC+1
- Manage adult sequelae of congenital esophageal disease (esophageal atresia/TEF survivors, H-type TEF, congenital esophageal stenosis), including endoscopic surveillance for Barrett's/cancer risk. Erasmus University Rotterdam+1
- Recognize non-vascular extrinsic compression (cervical osteophytes, substernal goiter, mediastinal cysts/masses) and pick therapies that actually help. <u>Lippincott Journals+1</u>

A. Vascular causes of dysphagia (the "ring-squeeze" family)

1) Dysphagia lusoria — aberrant subclavian artery (± Kommerell diverticulum, KD)

Clues: long-standing solid > liquid dysphagia; barium shows posterior impression; CTA confirms ARSA/KD anatomy. Management is anatomy- and symptom-driven: symptomatic patients often need revascularization of the subclavian (transposition/bypass) with ligation/exclusion of the aberrant origin ± TEVAR when a KD or arch aneurysm is present. Size thresholds for asymptomatic KD are debated; contemporary reviews and SVS guidance commonly cite repair when KD orifice ≥30 mm and/or adjacent descending aorta ≥50 mm, and repair for any symptoms. Expect hybrid or total endovascular strategies in experienced centers. Coordinate with vascular/cardiothoracic surgery. PubMed+3PMC+3Journal of Vascular Surgery+3

2) Dysphagia aortica — dilated/tortuous/aneurysmal thoracic aorta

Clues: older patients, thoracic aneurysm or mega-aorta on imaging; barium/EGD show extrinsic distal compression. Treat the **aorta** (medical optimization, endovascular or open repair) rather than the esophagus. Endoscopic dilation rarely helps. Watch for fistula risk signals (pain, sentinel bleed). PMC+1

3) Dysphagia megalatriensis — giant left atrium compressing the esophagus

Clues: atrial fibrillation/valvular disease; CTA or TEE shows left atrial mass effect on mid-esophagus; barium may show a mid-thoracic impression. Treatment is cardiac (diuresis, rhythm/valve intervention); GI procedures are adjunctive. Keep the diagnosis in mind in elderly patients with cardiac histories and "mystery" dysphagia. PMC+1

B. Congenital esophageal disorders that show up (or persist) in adulthood

1) Esophageal atresia (EA) survivors

Adults repaired in infancy carry high burdens of **dysmotility, reflux, strictures**, and **Barrett's**; several cohorts show elevated rates of BE and early esophageal cancer. Emerging adult programs recommend **structured endoscopic surveillance** starting around **age ~20**, with **10-year intervals to ~40** if normal, then individualized thereafter; this is evolving and should be tailored to symptoms and findings. Treat GERD aggressively; dilate strictures gently; biopsy widely. <u>Cghjournal+1</u>

2) Congenital esophageal stenosis (CES)

Can present in adults (often distal) and may mimic achalasia. Three histologies: **tracheobronchial remnants**, **fibromuscular thickening**, **membranous diaphragm**. **EUS** helps define depth; therapy differs—**dilation** works for membranous/fibromuscular types, whereas **resection** is often required for tracheobronchial remnants. Keep EA association in mind. <u>PMC+1</u>

3) Congenital H-type tracheoesophageal fistula (no atresia)

Occasionally missed until adulthood; think of it in recurrent pneumonias, cough with liquids, choking, or unexplained "achalasia-like" symptoms. Diagnosis often needs contrast esophagram with oblique/prone views plus bronchoscopy; management is usually surgical ligation/division (endoscopic closure has variable success), with attention to recurrent laryngeal nerve risk. PMC+1

C. Non-vascular extrinsic compression

1) Cervical anterior osteophytes/DISH

These bony ledges (often C4–C7) can narrow the hypopharynx/esophagus and cause dysphagia or aspiration. Diagnose with VFSS/barium and CT; start with dietary/rehab measures and anti-inflammatory management. For severe, refractory cases, anterior osteophytectomy (± fusion) improves swallowing in most series. Lippincott Journals+1

2) Substernal goiter/thyroid enlargement

Thyroid enlargement can compress the esophagus; **thyroidectomy** reliably improves luminal caliber and dysphagia in prospective series. Work-up is endocrine- and imaging-led (US/CT). PMC+1

3) Mediastinal cysts/masses (e.g., bronchogenic cysts, lymphoma)

Barium/EGD show a smooth external impression; **CT/MRI** define origin; treat the **mass** (surgical resection or oncologic therapy). Stenting is for palliation when definitive therapy isn't feasible. <u>PMC+1</u>

D. Imaging & testing pathway (clipboard)

- Start with barium esophagram for suspected extrinsic compression; it maps level and character of indentation. Then:
- CTA/MRA chest when vascular compression is plausible (proximal impressions, pulsatile symptoms, ARSA/arch anomalies on barium/CT). PMC
- EGD to exclude mucosal disease and to document an impression (avoid forceful dilation before the anatomy is known).
- 4. EUS when an intrinsic stenosis is suspected (e.g.. CES). or to characterize submucosal/cvstic lesions.

<u>PMC</u>

For EA survivors, schedule surveillance EGD with biopsies per local protocol; contemporary adult programs suggest beginning around 20 years with long intervals if normal. PubMed

E. Treatment summaries (right referral, right sequence)

- ARSA/KD (dysphagia lusoria): symptomatic → vascular repair (subclavian revascularization + aberrant origin exclusion; hybrid/TEVAR for KD/arch disease). Asymptomatic KD → consider repair at KD orifice ≥30 mm or adjacent aorta ≥50 mm; shared decision-making given limited data. Journal of Vascular Surgery+1
- Dysphagia aortica: manage the aorta; refer to vascular/cardiothoracic teams. PMC
- Megalatriensis: treat cardiac cause (HF/valve); GI support only. PMC
- EA survivors: GERD control, cautious dilation for anastomotic strictures, surveillance for BE/dysplasia. Cghjournal
- CES: dilate membranous/fibromuscular disease; resect tracheobronchial-remnant type. PMC
- H-type TEF: surgical division/ligation is the durable fix; endoscopic clips are rescue/selected cases.
 PMC
- Osteophytes/DISH: start conservative; anterior osteophytectomy for severe refractory dysphagia.
 PMC
- Goiter: thyroidectomy improves esophageal space and symptoms when compressive. PMC

F. Numbers & "don't-forget"s

- KD intervention is symptoms first, size second; commonly cited cut-points: orifice ≥30 mm or
 adjacent aorta ≥50 mm if asymptomatic. Evidence is mostly observational; document anatomy
 carefully. Journal of Vascular Surgery+1
- EA adults: BE prevalence and cancer risk are higher than in peers; programmatic endoscopic surveillance from ~age 20 has been proposed with long intervals if normal. Cghjournal+1
- Osteophytectomy improves dysphagia in most surgical series; recurrences are possible—coordinate with spine/ENT. PMC

Pitfalls & board-style traps

- Banding, dilating, or POEM-ing a patient whose main problem is an aberrant subclavian artery—
 you'll miss the target. Get CTA before therapy when barium/EGD suggest extrinsic compression. PMC
- Calling adult CES "achalasia" and sending to myotomy; the wrong physics. Use EUS and look for short distal fixed narrowing with typical histology. PMC
- EA survivors without surveillance—they're not "fixed for life." Build a long-term endoscopic plan.
 PubMed
- H-type TEF missed for years in "asthma" patients with cough to liquids—think fistula, not bronchi.
 PMC

10-minute drill (mini-cases)

- 58-year-old with solids dysphagia, barium shows posterior impression mid-esophagus; CTA: ARSA with 32 mm KD orifice.
 - **Plan:** Vascular referral. Likely **subclavian revascularization + KD exclusion** (hybrid/TEVAR depending on arch anatomy). Endoscopic dilation won't fix it. Journal of Vascular Surgery
- 2. 82-year-old with weight loss and chest pain; CTA: tortuous descending thoracic aorta compressing distal esophagus.
 - **Dx: Dysphagia aortica. Plan:** Manage the aorta (optimize BP; consider endovascular repair if indicated). GI provides nutrition strategies. PMC
- 3. 76-year-old with AF and mitral disease; barium: mid-esophageal indentation; CT/TEE: giant LA. Dx: Dysphagia megalatriensis. Plan: escalate HF/valve management; GI symptom support. PMC
- 31-year-old with lifelong "stuck food," EA repaired in infancy; now recurrent strictures and erosive esophagitis.
 - **Plan:** high-dose **PPI**, gentle scheduled **dilations**, and enroll in **adult EA surveillance** pathway (EGD with biopsies at program-defined intervals). <u>PubMed</u>
- 45-year-old with dysphagia to liquids > solids; recurrent pneumonias; "normal" EGD.
 Plan: Contrast esophagram (oblique/prone) + bronchoscopy to evaluate H-type TEF; likely surgical ligation/division. PMC
- 70-year-old with C4–C7 anterior osteophytes; VFSS shows vallecular residue and hold-up.
 Plan: conservative measures first; if severe/refractory → anterior osteophytectomy (± fusion) with ENT/spine. PMC

One-page takeaway

- When dysphagia smells "extrinsic," **start with barium**, confirm with **CTA/MRA** if vascular is plausible, and **treat the source** (vessel, aorta, heart, bone, thyroid, or mass), not the esophagus. PMC
- EA survivors and adult congenital lesions deserve a structured plan: EGD surveillance in adulthood for EA, targeted therapy for CES and H-type TEF. <u>PubMed+1</u>
- Dilation and antireflux tricks are side quests: the main quest is anatomy. Once you man the

anatomy, referrals and outcomes improve. PMC

Next — **Module 19: Caustic ingestion & radiation injury (acute to chronic).** We'll triage acute burns, time the first scope, prevent strictures, and manage the long game (strictures, cancer risk, and reconstruction). **You said:**

Next

ChatGPT said:

Request for GPT-5 Pro

Reasoned for 4m 24s

Module 19 — Caustic ingestion & radiation injury (from triage to long-term repairs)

Corrosives punish tissue fast; radiation punishes tissue slowly. Different clocks, same physics: protect the airway, map depth, feed distally, and remodel scars with finesse.

What you'll master

- A first-hour bundle for suspected caustic ingestion (when to intubate, when to scan, when to scope) and how to use CT vs EGD without guesswork. Medscape+2World Society of Emergency Surgery+2
- Zargar grading in practice and the timing landmines (why days 5–15 are the danger zone for endoscopy). <u>PubMed+1</u>
- Evidence-anchored choices on steroids, antibiotics, sucralfate, NG tubes, and nutrition (what helps, what's hype). NCBI+3PubMed+3PMC+3
- A durable plan for stricture prevention & management (dilation cadence, adjuncts, stents, and when
 to operate). Gut+1
- Radiation esophagitis & strictures: symptom control the smart way and realistic outcomes with dilation ± adjuncts. NCBI+1

A) Caustic ingestion — rapid triage & mapping

1) Stabilize first

 Airway: early controlled orotracheal intubation if voice changes, stridor, respiratory distress, or heavy oropharyngeal burns (avoid blind nasotracheal). Keep NPO, IV PPI, analgesia. No emetics, neutralization, or blind NG placement. Medscape+1

2) Imaging vs endoscopy (complementary, not competitive)

- Contrast-enhanced CT (neck-chest-abdomen) helps detect transmural necrosis, mediastinal/abdominal complications, and can triage who needs surgery. Several guidance documents now accept CT-led early management in selected settings. World Society of Emergency Surgery+2Medscape+2
- EGD is the workhorse for mucosal grading and disposition when the patient is stable: do it within 12–24 hours (generally safe up to 48–96 h), but avoid days 5–15 when tissue is friable. Use minimal insufflation. PMC+1

3) Zargar grading (what it buys you)

- **0–1–2A**: low risk for strictures; advance diet as symptoms allow.
- 2B (deep/circumferential ulcers): high stricture risk.
- **3A–3B** (necrosis): high risk for early complications; surgery if CT suggests transmural necrosis. Prognosis and stricture risk track with grade. PubMed+1

B) Meds & tubes — what's supported (and what isn't)

- Steroids: Adult data do not support routine systemic steroids to prevent strictures after caustic
 ingestion. Some pediatric guidance allows short high-dose dexamethasone in grade IIb injuries, but
 this remains controversial and not standard for adults. If steroids are used, many experts couple
 antibiotics given infection risk. Document your rationale. PubMed+2Medscape+2
- Antibiotics: Not for routine prophylaxis. Consider if transmural injury, suspected infection/mediastinitis, or when steroids are used. PMC+1
- Acid suppression: PPIs are commonly used for mucosal care, although high-quality proof of benefit is limited; they're reasonable supportive therapy. <u>BioMed Central</u>
- Sucralfate: small RCTs/series (largely pediatric or mixed) suggest fewer strictures with intensive short-course sucralfate in grade IIb injury; evidence is suggestive, not definitive—you can consider it as an adjunct. PubMed+1
- NG/NJ tubes & feeding: Avoid blind NG placement early; if needed for decompression or feeding, place under endoscopic guidance. Early enteral nutrition (NG/NJ/jejunal) is reasonable when safe; weigh reflux/aspiration and infection risks. NCBI+1

C) The timeline (the "don't-tear-me" calendar)

- 0–48 h: CT ± EGD for grading; airway, NPO, supportive meds. PMC+1
- Days 5–15: avoid diagnostic EGD/dilation if possible—tissue is weak. PMC
- Week ~3 onward: if stricturing appears, begin graded dilations (often every 1–2 weeks initially), escalating cautiously. Many programs target start ≈3–6 weeks. Gut+1

D) Stricture prevention & management (post-caustic)

- Dilation first-line: balloon or bougie—choose by anatomy and operator comfort. Start small and step
 up: complex long lesions may need many sessions. Gut
- Adjuncts for refractory disease (after multiple well-done dilations):
 - Intralesional triamcinolone (evidence most favorable in peptic/anastomotic; mixed in caustic).
 SpringerLink
 - o **Topical/injected mitomycin-C** (off-label; small studies only). Lippincott Journals
 - Temporary fully covered SEMS (RBES only; 6–8 weeks dwell, ≤12 weeks max). Avoid as first-line for benign strictures. Fixation (suture/OTSC) reduces migration. Esge+1
 - Surgery (reconstruction) for very long/intractable disease.

Clipboard numbers

- Start dilation ≈3–6 weeks post ingestion; avoid the 5–15 day window.
- FC-SEMS dwell 6-12 weeks (max ~12 weeks), not as first-line for benign strictures. Medscape+1

E) Long-term cancer risk after caustics (don't lose the future)

Severe caustic injury confers a markedly elevated ESCC risk that emerges 10–30 years later. Reasonable programs start surveillance EGD at ~15–20 years post-ingestion, then every 2–3 years (individualize by initial grade/stricture history). Counsel on smoking/alcohol risk modification. PMC+2Semantic Scholar+2

F) Radiation injury — two phases, two toolkits

- 1) Acute radiation esophagitis (during/soon after RT/CRT)
 - Symptoms appear within 2–3 weeks of therapy. Use dietary modification, analgesics, viscous lidocaine, PPI, and treat concurrent candida when present. Coordinate with oncology for RT dose constraints and antiemetics. NCBI+1
- 2) Late radiation strictures (typically 3–8 months post-RT; higher risk with CRT, higher dose, and severe acute esophagitis)
 - Serial dilations are effective; anticipate multiple sessions. Radiation strictures are fibrotic and recurrent, sometimes benefitting from intralesional steroids (small series) or, rarely, temporary FC-SEMS for RBES. Expect careful wire-guided technique and fluoroscopy in complex anatomy. PMC+2PMC+2

G) Mini-algorithms (clipboard)

Suspected caustic ingestion (adult)

- 1. Airway (intubate early if any doubt) \rightarrow IV PPI, analgesia, NPO.
- 2. CT with IV contrast to assess transmural injury/collections.
- 3. If stable & resources allow: EGD within 12–24 h for Zargar grade.
- 4. Avoid days 5-15 for scope/dilation.
- 5. Feeding via endoscopically placed NG/NJ/jejunostomy as appropriate.
- **6.** No routine steroids/antibiotics; reserve for defined scenarios.
- 7. Week 3–6: begin dilations if symptomatic stricturing. NCBI+3Medscape+3PMC+3

Radiation strictures

Dysphagia after thoracic RT/CRT → barium + EGD → wire-guided graded dilations; add steroids selectively; FC-SEMS for RBES; nutrition support in parallel. PMC+1

H) Pitfalls & board-style traps

- Neutralizing acids/alkali, inducing emesis, or doing blind NG: higher harm than help. Use endoscopic guidance if a tube is needed. NCBI
- Treating grade IIb caustic burns with routine steroids as an adult standard—evidence doesn't support it; pediatrics is a different discussion. Document your reasoning if you deviate. PubMed+1
- Scoping during days 5–15 or starting dilation too early—perforation city. PMC
- Calling every late dysphagia after CRT a "tumor recurrence" without considering radiation stricture stage carefully, then dilate. PMC

I) 10-minute drills

- 1. Suicidal alkali ingestion 2 h ago; odynophagia, hoarseness.
 - Airway assessment; intubate if compromised. CT with IV contrast now. If stable and no transmural necrosis, EGD within 12–24 h for grading; NPO, IV PPI, pain control. No routine steroids/antibiotics. Medscape+2Medscape+2
- 2. Zargar 2B circumferential ulcers; stable.
 - Admit, NPO → cautious enteral feeding via endoscopically placed tube as needed; no routine steroids; plan early dilation ~3–6 weeks if dysphagia persists/stricture forms. Consider short-course sucralfate as adjunct. PubMed+2NCBI+2
- 3. Complex long stricture 2 months after lye ingestion; >6 dilations with quick restenosis.
 - Define as refractory → consider intralesional steroid or topical MMC, and temporary FC-SEMS with 6–8 week dwell; surgical consult if failure. SpringerLink+1
- 4. Odynophagia 3 weeks into concurrent CRT for lung cancer.
 - This is acute radiation esophagitis: viscous lidocaine, PPI, analgesics, soft diet; treat candida if present; coordinate with oncology for supportive care. NCBI

- 5. Late dysphagia 5 months after CRT for esophageal SCC; barium shows high-grade short narrowing.

 Scope with wire-guided graded dilations; expect multiple sessions. Consider intralesional steroid if recalcitrant; stent only for RBES. PMC
- 6. Teen with grade IIb acid ingestion in childhood, now 22 years old.
 - Start surveillance EGD program (e.g., q2-3 years), counsel on tobacco/alcohol risk. PMC

One-page takeaway

- CT early to detect deep injury; EGD in 12–24 h for grading—but skip days 5–15. Supportive care
 beats knee-jerk meds; steroids/antibiotics aren't routine. Feed early via guided tubes. Medscape+
 2PMC+2
- Plan for scars: dilation from ~week 3–6, escalate with steroids/MMC or temporary FC-SEMS for refractory cases. Medscape+1
- After caustics, the cancer clock ticks for decades—start EGD surveillance ~15–20 y post-ingestion in high-risk patients. PMC
- Radiation injury: treat pain and inflammation, then dilate late strictures methodically; expect recurrences and plan adjuncts judiciously. NCBI+1

Next — **Module 20: Quality, safety, & documentation.** Checklists for high-risk esophageal procedures, consent scripts that actually inform, photo-documentation that protects you (and the patient), and how to write a note that future-you will thank you for.

You said:

Next

ChatGPT said:

Request for GPT-5 Pro

Reasoned for 6m 49s

Module 20 — Quality, safety & documentation (EGD with an esophageal focus)

Quality is a habit, not a hero move. This module gives you pocket-ready checklists, standard phrasing, and the reporting touches that protect patients (and future-you).

1) Pre-procedure "SIGN-IN" (done before the patient rolls into the room)

Indication & readiness

- Confirm appropriate indication; verify NPO status (typical fasting: ≥2 h for clear liquids; ≥6 h for a light meal—ASA/ASGE-aligned). sages.org+1
- Review allergies, airway red flags, OSA risk (use a quick screen such as STOP-Bang if history suggests it), and ASA class. Higher OSA risk raises vigilance during moderate—deep sedation. PMC+ 2stopbang.ca+2
- Antithrombotics: decide hold/continue per BSG/ESGE 2021 risk tables (high-risk EGD actions include dilation, EMR/ESD, variceal therapy, EUS-FNA). Document the plan. <u>esge.com</u>

Consent essentials (script & documentation)

 Capacity checked; the plan, benefits/harms, alternatives, sedation plan, post-procedure limitations, and how we'll handle incidental findings. ESGE's 2023 position statement lays out minimum standards; laws vary, but those elements are universal. esge.com

2) Team "TIME-OUT" (before scope insertion)

- Identity, procedure, side/level (esophagus), allergies, anticoagulant plan, sedation plan, rescue
 equipment, and roles. Use a structured checklist (AHRQ/WHO-style); evidence shows fewer errors
 when teams formalize this. AHRQ+1
- Monitoring: pulse oximetry & noninvasive BP for all; supplemental O₂ is recommended for
 moderate sedation and required for deep sedation/propofol; capnography is recommended for
 deep sedation (ASGE) and remains debated for routine moderate sedation (ASGE vs ASA). Document
 what you used and why. GIE Journal+2NCBI+2

3) Intra-procedure quality moves (EGD focused)

Photo-documentation — the baseline set

Capture landmarks **and** every abnormality. ESGE's STAR position statement specifies **10 required images** for a normal exam (and inserts photos in the report):

Proximal esophagus, 2) Distal esophagus, 3) Z-line & diaphragmatic indentation, 4) Duodenal bulb, 5)
 D2, 6) Antrum, 7) Cardia/fundus (retroflex), 8) Lesser curve (partial retroflex), 9) Incisura (partial retroflex), 10) Greater curve (forward). Take additional images for each abnormality. esge.com

Use validated classifications in the text (don't hand-wave):

- Barrett's: Prague C&M; state C & M lengths and whether chromoendoscopy (e.g., acetic acid/virtual) was used.
- EoE: EREFS features scored.
- Varices: size per Baveno (small <5 mm; large ≥5 mm).
- · Caustic injury: Zargar grade if applicable.
- Lesions: Paris classification for non-polypoid morphology.

These are explicitly recommended for uniform UGI reporting. esge.com

Inspection time targets

For a routine diagnostic UGI exam, aim for ≥7 minutes from intubation to extubation (and ≥ 1 min/cm of circumferential Barrett's during surveillance). Longer looks see more. lirias.kuleuven.be

4) Post-procedure "SIGN-OUT" (before the patient leaves the room)

- Biopsy map: location(s), number of fragments per site, random vs targeted, and vials used must be
 explicitly stated in the report. STAR treats photo-documentation and a clear biopsy ledger as
 mandatory parts of the record. esge.com
- Medications & devices: total sedatives/analgesics, oxygen delivery, accessories used (bands/clips/stents), and device lot numbers per local policy.
- Adverse events: close the loop using the ASGE adverse-event lexicon (what happened, severity, causality, and outcome). For EGD specifically, consult ASGE's 2022 update on EGD-related AEs for contemporary rates and risk factors. <u>PubMed+1</u>
- Discharge & escalation plan: diet/meds (e.g., PPI after EVL per local protocol), warning symptoms, and follow-up. If pathology pending, say what triggers faster contact.

5) Practical checklists (clipboard-ready)

A) EGD Safety & Quality Checklist (condensed)

Sign-in

- Indication verified; NPO met (≥2 h clears / ≥6 h light meal).
- Allergies; comorbids; ASA class; OSA risk (e.g., STOP-Bang if suggested).
- Antithrombotics plan per BSG/ESGE 2021.
- Consent documented with risks/alternatives/sedation. esge.com+3sages.org+3eLearning Digestivo+3

Time-out

- Patient/procedure/side; anticoagulant plan confirmed; rescue drugs/equipment ready.
- Monitoring plan: SpO₂, BP; O₂ strategy; capnography for deep sedation; roles confirmed. GIE
 Journal+1

In-procedure

- Full landmark photo set + all abnormalities.
- Use Prague / LA / EREFS / Baveno / Paris / Zargar as applicable.
- Inspection time target ≥7 min; slow down over Barrett's (≥1 min/cm). esge.com+1

Sign-out

- Biopsy ledger: sites, counts, targeted vs random, vials; embed images.
- Sedation totals, devices, immediate AEs using ASGE lexicon; aftercare plan and follow-up. esge.com+

6) Sedation notes that keep you out of trouble

- Levels & rescue: sedation is a continuum; document intended level and your ability to rescue the
 next level (training, staff, equipment). www.asge.org
- Oxygen: consider for moderate sedation; required for deep/propofol cases. GIE Journal
- Capnography: ASGE supports considering it for deep sedation; it is not mandated for routine
 moderate sedation (contrast with ASA's broader endorsement). State what you used. NCBI
- High-risk airways (known OSA, high STOP-Bang, difficult airway history): escalate monitoring, consider anesthesia support, and plan recovery accordingly. PMC

7) Antimicrobial policy & prophylaxis (don't freeload antibiotics)

Routine **IE prophylaxis is not recommended** for diagnostic EGD, dilation, EVL, or most therapeutic EGD; treat specific infection risks rather than "just in case." If you do give antibiotics (e.g., selective scenarios), document the indication. www.asge.org

8) Documentation templates (phrases you can paste)

Findings (esophagus)

- "Z-line at xx cm; diaphragmatic hiatus at xx cm; LA grade B esophagitis. No inlet patch. No varices."
- "Barrett's epithelium CxMy by Prague; virtual chromo used; no visible dysplasia."
- "EoE stigmata per EREFS: edema x, rings x, exudates x, furrows x, strictures x."
- "Stricture at xx cm, traversable; biopsies obtained to exclude neoplasia/EoE."
- "Images: 10 standard landmarks captured; abnormalities photographed."
- "Biopsies: distal esophagus 4, proximal 4, random vs targeted noted; 2 vials—labeled and recorded."

Adverse events (ASGE lexicon)

"Adverse event: immediate bleeding post-biopsy; moderate severity; treated with clip; no unplanned admission." PubMed

(These phrases map 1:1 to STAR/ESGE expectations for structure and terminology.) esge.com

9) What to audit in your service (quick wins)

- % EGDs with all 10 landmark photos attached. esge.com
- Median inspection time and % exams ≥7 min. <u>lirias.kuleuven.be</u>
- % Barrett surveillance exams documenting Prague C&M and chromo use; % following Seattle sampling when indicated. esge.com
- % reports listing biopsy counts & vials explicitly. esge.com
- Antithrombotic adherence to BSG/ESGE tables. esge.com
- Sedation documentation completeness (intended level, O2, capnography status). GIE Journal
- Adverse events recorded with ASGE lexicon categories. PubMed

10) Why this matters (short sermon with receipts)

Standardized reports with required images, agreed classifications, and biopsy accounting raise detection, reduce "lost details," and let teams compare apples to apples. ESGE's **STAR** framework and **performance-measure updates** explicitly push photo-documentation, terminology, inspection time, and post-procedure details into routine quality. That's the scaffold your advanced therapy decisions rest on. esge.com+1

Reference touchstones for this module

- ESGE STAR: Standardization of Reports for UGI endoscopy (2025) images, terminology, biopsy/vial accounting, and required postprocedure info. esge.com
- ESGE performance measures for UGI endoscopy original 2016 set and 2025 update (inspection time ≥7 min; Barrett timing). esge.com+1
- ASGE 2018 sedation guideline fasting, O₂ & capnography stance, levels/rescue. <u>eLearning</u> Digestivo+1
- ESGE informed consent position statement (2023) minimum elements and good-practice standards. esge.com
- BSG/ESGE 2021 antiplatelet/anticoagulant update pre-procedure drug plans by risk. esge.com
- ASGE adverse-event lexicon + EGD AE update (2022) how to classify/report adverse events.
 PubMed+1
- Safety checklists (AHRQ; WHO) structure your sign-in/time-out/sign-out. AHRQ+1

You said:

Next

ChatGPT said:

Request for GPT-5 Pro

Reasoned for 6m 7s

Module 21 — Barrett's esophagus (deep dive): risk-tiered surveillance, crisp dysplasia calls, and an evidence-first EET playbook

Barrett's is a game of centimeters and cell fates. Measure honestly, biopsy methodically, confirm dysplasia rigorously, and ablate with a plan.

What you'll be able to do

- Diagnose Barrett's without overcalling: apply the 1-cm rule, use Prague C&M correctly, and stop biopsying the innocent irregular Z-line. Giboard Review+2Gastrojournal+2
- Surveil based on risk, not vibes: intervals that hinge on segment length and worst histology, including post-ablation schedules. Giboard Review
- Treat dysplasia/endoscopic T1 disease with a clean algorithm: resect what you see (EMR/ESD) then
 ablate the rest (RFA ≈ cryo ≈ H-APC for endpoints), and keep recurrences rare with reflux control
 and smart surveillance. PMC+3Thieme+3American Gastroenterological Association+3

A) Diagnosis: draw the map before taking the shots

- 1. What counts as Barrett's?
 - Require ≥1 cm of columnar mucosa in the tubular esophagus plus histologic intestinal metaplasia (IM). Do not biopsy a normal or <1 cm irregular Z-line unless you see a lesion—the Prague system isn't reliable below 1 cm and progression risk is negligible. Document Prague C
 & M every time. Giboard Review+1
- 2. How to sample at the index exam
 - Try for ≥8 biopsies when BE is suspected; for short segments where eight isn't possible, take ≥4
 per cm of circumferential BE and ≥1 per cm in tongues. If IM is absent once, one repeat exam
 to resample is reasonable; beyond that, stop chasing. Giboard Review
- 3. Quality moves during surveillance
 - Use high-definition white light plus virtual chromo; inspect deliberately (aim ≥1 min per cm of BE) and photograph the segment every cm. Then apply the Seattle protocol: four-quadrant biopsies q2 cm (or q1 cm when there's dysplasia history). PubMed+1

B) Surveillance intervals (nondysplastic & "IND")

- Nondysplastic BE (NDBE):
 - <3 cm → EGD q5 y; ≥3 cm → EGD q3 y. Length matters; longer segments progress more.
 Giboard Review
- Indefinite for dysplasia (IND) (after GI-path confirmation): optimize acid (typically BID PPI), repeat
 EGD in ~6 months; if still IND → annual EGD; otherwise follow the downstream diagnosis. Giboard
 Review
- Stop surveillance when the patient is no longer a candidate for endoscopic eradication therapy (EET). Document that decision. <u>Giboard Review</u>
 - Pathology rule: any dysplasia call (LGD/HGD) should be confirmed by a second GI pathologist; interobserver agreement is best at the extremes (NDBE/HGD) and worst in LGD/IND, which is exactly where decisions are heavy. <u>Giboard Review</u>

C) Who to screen (one slide of pragmatism)

Consider a single screening EGD for chronic GERD patients with ≥3 risk factors (male, age >50, White race, tobacco, obesity, first-degree family history). A swallowable non-endoscopic cell collection device plus biomarker is an acceptable alternative where available. Giboard Review

D) Dysplasia & early cancer: the endoscopic cure track

- 1. Sequence matters
 - Resect visible lesions first (cap-band EMR for focal/nodular disease; ESD only when en-bloc histology is critical) → then ablate the remaining flat Barrett's. That's the Western standard and guideline-anchored. Giboard Review+1
- 2. Who must be treated?
 - \circ HGD or intramucosal adenocarcinoma (T1a) \rightarrow EET is standard.
 - LGD (after expert confirmation) → EET preferred (conditional), but surveillance is reasonable if patient preference tilts toward avoiding procedures. Discuss both. Giboard Review+1
- 3. What's "curative" by histology?
 - o For T1a EAC with **R0 resection**, **no LVI**, **G1−2** → treat endoscopically (then ablate residual BE).
 - Low-risk T1b (sm1 ≤500 μm, no LVI, G1-2) may be managed endoscopically in expert centers with staging and close follow-up. Thieme

E) Ablation toolbox (and when to switch)

- RFA remains the most studied ablation for flat Barrett's; cryoablation (spray or balloon) and hybrid-APC are valid alternatives, including in RFA-refractory disease. Comparative data suggest similar efficacy for eradication of dysplasia/IM; choose by anatomy, prior response, and local expertise/cost. American Gastroenterological Association+2PMC+2
- During and after EET, ensure robust acid suppression; better reflux control correlates with fewer recurrences. <u>Thieme</u>

Expected outcomes & recurrences

After CE-IM, any IM recurrence typically runs ~3–10 per 100 patient-years; dysplastic recurrences
are lower and often found near the GEJ—target that area. Plan surveillance and touch-up therapy
accordingly. CGH Journal+2Annals of Esophagus+2

F) Post-EET surveillance (don't guess—use the table)

- Pretreatment LGD \rightarrow scope at 1 y, 3 y, then q2 y.
- Pretreatment HGD/IMC → 3 mo, 6 mo, 12 mo, then annually.
 At each post-CEIM exam, inspect carefully and biopsy GEJ (separate vial) and distal 2–5 cm of neosquamous epithelium (separate vial), plus any visible lesions. Giboard Review

G) Medical therapy & "extras"

- PPI: at least once-daily for all patients with BE; escalate during EET. Antireflux surgery is not an
 anti-cancer strategy by itself. Giboard Review
- Ancillary tests (p53 immunostaining, TissueCypher, WATS-3D): U.S. guidelines do not recommend
 routine use to replace histology-based surveillance/treatment decisions. Giboard Review

H) Quick reference (clipboard)

Do this, verbatim in your notes

- "Barrett's present CxMy by Prague; high-def WL + virtual chromo used; inspected ≥1 min/cm;
 Seattle biopsies taken (q2 cm, or q1 cm with dysplasia history)." PubMed+1
- "Any dysplasia reviewed by second GI pathologist before therapy." Giboard Review
- "Visible lesion resected (EMR/ESD) → then ablation; acid suppression optimized." Thieme
- "NDBE <3 cm → q5 y; ≥3 cm → q3 y. IND → BID PPI + repeat in 6 mo." Giboard Review
- "Post-CEIM surveillance tied to worst baseline histology; GEJ and distal 2–5 cm sampled in separate vials." Giboard Review

I) Pitfalls that waste years (and money)

- **Biopsying irregular Z-lines** or calling <1 cm tongues "Barrett's." That mislabels patients and triggers needless surveillance. Giboard Review
- Skipping EMR on a visible lesion and going straight to ablation—histology drives cure. Giboard Review
- Treating community-diagnosed LGD without expert confirmation—nearly half will downstage when reviewed. Giboard Review
- Assuming RFA is the only ablation: modern data support cryo and hybrid-APC for frontline or salvage, with comparable endpoints. PMC+1

J) 10-minute drills (mini-cases)

- 1. COM2 with erosive esophagitis; path: "IND".
 - Start **BID PPI**, heal mucosa, **repeat EGD ~6 mo**. If NDBE, shift to length-based surveillance; if LGD, enter the LGD track (EET vs surveillance). <u>Giboard Review</u>
- 2. C1M3 with a 12-mm nodular island; path on EMR: T1a, G2, LVI-negative.
 - Curative ER; now ablate residual BE (RFA/cryo/H-APC acceptable). Post-EET surveillance per HGD/IMC schedule. Thieme
- 3. C3M5 NDBE, asymptomatic.
 - Document Prague, do a slow exam with virtual chromo, Seattle q2 cm. Surveillance q3 y (length ≥ 3 cm). Giboard Review
- 4. LGD (confirmed by expert), flat segment.
 - Shared decision: **EET favored** (conditional). If surveillance chosen: **EGD at 6 and 12 mo**, then **annually** while LGD persists. **Gastrojournal+1**
- 5. CE-IM achieved after RFA; 18 months later, IM at GEJ.
 - Touch-up ablation (often focal RFA or H-APC/cryo) and **continue post-CEIM schedule**; most recurrences are small and near the **GEJ**. <u>Gastrojournal</u>

One-page takeaway

- Name it right (≥1 cm + IM; don't biopsy the irregular Z-line), measure it right (Prague), sample it
 right (Seattle), and watch it right (length- and histology-based intervals). Giboard Review+
 2Gastrojournal+2
- Treat dysplasia: EMR/ESD of any lesion → ablate the rest; HGD/IMC = EET; LGD = EET preferred (or surveillance if well-informed). RFA, cryo, and hybrid-APC are all legitimate tools—outcomes converge in modern data. PMC+3Giboard Review+3Gastrojournal+3
- After CE-IM, recurrences are uncommon and manageable; surveil where they hide (GEJ/distal neosquamous) and keep reflux tightly controlled. Giboard Review+1

Up next: **Module 22** — **Gastroesophageal reflux disease (GERD) & hiatal hernia**: pathophysiology that actually explains symptoms, when to measure acid, when to cut, and how GERD management dovetails with Barrett's prevention.

You said:

Next

ChatGPT said:

Request for GPT-5 Pro

Reasoned for 6m 24s

Module 22 — Advanced GERD & Hiatal Hernia (GI-level deep dive)

This one ties the reflux "what" to the anatomic "why"—and then to pragmatic choices (optimize meds vs. endoscopic therapy vs. surgery). Keep your diagnostic spine straight: **objective evidence first, anatomy second, symptom phenotype third.**

1) Definitions & core physiology

- GERD = symptoms/complications from gastric contents refluxing into the esophagus; confirmed by
 mucosal injury or abnormal reflux monitoring. ACG 2022 is explicit on the need for objective testing
 when GERD is uncertain. Lippincott
- Hiatal hernia (HH) = herniation of stomach through the esophageal hiatus:
 - Type I (sliding): GEJ above diaphragm; >90–95% of HH.
 - o Type II (true paraesophageal): fundus herniates, GEJ stays put.
 - Type III (mixed): GEJ + fundus herniate.
 - o **Type IV**: other organs in the sac (colon, spleen, etc.). NCBI+1

Hill (GE flap valve) grade on endoscopy correlates with HH and reflux burden; grades III–IV predict more pathologic reflux. Use it in your EGD report. PMC+1

2) How to prove (or disprove) GERD—Lyon 2.0 playbook

When PPI response doesn't settle it, measure:

- Ambulatory reflux monitoring (off PPI)
 - Acid Exposure Time (AET):

- >b% = conclusive GEKU.
- <4% all days + <40 reflux episodes = physiologic.</p>
- 4-6% = grey zone—lean on adjuncts. gut.bmj.com+1
- Adjunctive metrics that move the needle in the grey zone:
 - o Mean nocturnal baseline impedance (MNBI): <1500 Ω supports GERD; >2500 Ω argues against it. (Lyon 2.0 added thresholds; PSPW was *retired* as a routine criterion.) Research @ Flinders+1
- Wireless 48–96 h pH extends sensitivity; Lyon 2.0 provides thresholds for prolonged studies.
 Research @ Flinders

On-PPI pH-impedance is for refractory symptoms when GERD is already established. ACG explicitly recommends **on-therapy impedance-pH** in that setting. Lippincott

3) Diagnostic workflow (evidence-anchored)

- 1. Typical heartburn/regurgitation, no alarms → 4–8 wk PPI once daily before breakfast; stop if well. If incomplete response/relapse off therapy → investigate. Lippincott
- Endoscopy if PPI-refractory, alarm features, or Barrett's risk; reflux monitoring off PPI if endoscopy is non-diagnostic. <u>Lippincott</u>
- Pre-invasive therapy (any endoscopic or surgical plan): document abnormal reflux (off PPI) and get HRM to rule out achalasia/absent contractility and assess reserve in IEM (multiple rapid swallows). Lippincott
- **4. Isolated extra-esophageal symptoms** (cough, laryngeal symptoms) → do **objective testing up-front**, multidisciplinary care; outcomes after ARS are inferior unless reflux is proven. <u>CGH Journal+1</u>

4) Medical therapy—what to use and when

PPI basics (optimize first): correct timing, escalate to BID if needed, and de-escalate to the lowest effective dose once controlled. <u>Giboard Review</u>

Potassium-competitive acid blocker (PCAB) — vonoprazan:

Healing of erosive esophagitis: 20 mg qd x 8 weeks; maintenance: 10 mg qd up to 6 months; meals
independent. FDA-approved in the US (11/2023). Useful in rapid, potent acid control and in CYP2C19
rapid metabolizers. FDA Access Data+1

Adjuncts for symptom control

- Alginates (post-prandial "raft"): superior to placebo/antacids for symptom relief; may help during PPI washout before testing. PMC+1
- Night H2RA can blunt nocturnal acid breakthrough in select cases; reassess need as tolerance develops (guided by ACG/AGA pathways). Giboard Review
- Lifestyle with a purpose: weight loss, avoid late meals, elevate head of bed; especially helpful with HH or supine symptoms. Giboard Review

5) Hiatal hernia—what matters clinically

When HH matters: reflux barrier failure, obstructive symptoms (post-prandial fullness, early satiety), volvulus risk (PEH), micro-aspiration, and Cameron lesions (linear erosions/ulcers at the diaphragmatic pinch causing iron-deficiency anemia). SAGE+1

Indications for repair (paraesophageal, types II-IV):

 Symptomatic PEH (obstructive symptoms, regurgitation), anemia from Cameron lesions, documented micro-aspiration or risk groups (e.g., lung transplant), and certainly strangulation/volvulus. SAGES 2024 emphasizes shared decision-making given limited RCTs. <u>SAGE+1</u>

Cameron lesion takeaways: often occult, missed on first EGD, treat with **PPI + iron**; HH repair considered if recurrent/large hernia or transfusion-dependent anemia. NCBI+1

6) Choosing an anti-reflux procedure

A) Endoscopic options (selective):

- TIF 2.0: reasonable in patients with troublesome heartburn/regurgitation who don't want surgery, no LA C/D, and HH ≤2 cm (or combined with small crural repair in experienced hands). ACG suggests consideration in the right anatomy; evidence quality is low. Lippincott+1
- Radiofrequency (Stretta): evidence remains mixed; SAGES multi-society consensus states Stretta/TIF
 have better outcomes than PPIs in selected patients, but this conflicts with more cautious GI
 guidance—use only with objective reflux and patient counseling on limited durability data. SAGE

B) Surgical options:

- Laparoscopic fundoplication (complete or partial): strong option for proven GERD, especially with LA
 C/D, large HH, or persistent symptoms. HRM guides wrap choice (partial if poor peristaltic reserve).
 Lippincott
- Magnetic sphincter augmentation (MSA/LINX): acceptable alternative to fundoplication (often with
 concurrent crural repair); growing evidence supports symptom and regurgitation control with
 acceptable safety and removability. SAGE+1
- Obesity (BMI ≥35): RYGB is favored when GERD and obesity coexist, offering weight-loss benefits
 and reflux control; sleeve can worsen GERD. (Consensus from SAGES multi-society guideline.) <u>SAGE</u>

Mesh at the hiatus?

Long-term RCT follow-up suggests no durable reduction in recurrence with routine non-absorbable mesh

and **more dysphagia**, arguing **against routine mesh** reinforcement in standard repairs; selective use remains debated. JAMA Network+1

Short esophagus (rare but real): If, after full mediastinal mobilization, there's inadequate intra-abdominal length, consider **Collis gastroplasty** + wrap in specialized centers. PMC

7) Extra-esophageal reflux (EER/LPR)—temper expectations

- Use objective reflux testing before empiric PPI when symptoms are purely extra-esophageal; involve ENT/pulmonary colleagues. Benefit from antireflux surgery is inferior unless reflux is proven. <u>CGH</u> Journal+1
- Recent interdisciplinary statements (e.g., San Diego & Dubai consensuses) push for standardized definition and testing given many "LPR" patients have normal reflux monitoring. PubMed+1

8) Practical selection algorithm (one-paragraph version)

- 1. Optimize meds (PPI timing/dose; add alginate; address weight/sleep). If symptoms persist →
- 2. Prove GERD (endoscopy; off-PPI reflux monitoring using Lyon 2.0). If proven and anatomy is favorable (HH ≤2 cm), consider TIF for patients declining surgery; otherwise fundoplication or MSA after HRM. With large HH or PEH, repair with concomitant fundoplication; avoid routine mesh. In obesity, prefer RYGB. For refractory symptoms with established GERD, do on-PPI impedance-pH to phenotype (persistent acidic vs. non-acid reflux vs. not reflux-related). Lippincott+2gut.bmj.com+2

9) High-yield pearls (boards & wards)

- Proven GERD before invasive therapy: abnormal AET off PPI, LA C/D, peptic stricture, or long/biopsy-proven Barrett's. (LA A does not prove GERD.) PMC
- TIF eligibility hinges on hernia size ≤2 cm and absence of severe esophagitis. Lippincott
- Cameron lesions in big hernias = chronic IDA; think PPI + iron, then hernia repair if recurrent. NCBI
- Mesh at hiatus is not a panacea—recurrence reduction doesn't hold long-term and dysphagia risk rises. JAMA Network
- MNBI <1500 Ω reinforces GERD in borderline AET, >2500 Ω argues against it; PSPW is now research-adjacent. Research @ Flinders+1

10) How I counsel patients (fast, honest, data-savvy)

- "We'll prove reflux before talking procedures."
- "Small hernia + proven reflux? We can talk TIF vs. MSA vs. partial/complete wrap. Big hernia or severe esophagitis? You'll likely do best with laparoscopic repair + fundoplication."
- "Weight + reflux? RYGB treats both."
- "Voice/cough only? Let's test first—surgery helps only if reflux is driving it." (ACG/AGA/SAGES all converge here.) Lippincott+2CGH Journal+2

11) Mini-checklist for your notes/templates

- EGD: Describe LA grade, Hill grade, HH size (cm), diaphragmatic pinch/EGJ gap, biopsies (EoE, Barrett's). PMC
- Physiology: HRM (achalasia? contractile reserve?), reflux monitoring (AET %, # reflux events, MNBI). gut.bmj.com
- Plan: Optimize meds (PPI timing, consider vonoprazan for EE; alginate adjunct), lifestyle (weight, head-of-bed), then endoscopic vs. surgery per anatomy + physiology. FDA Access Data+1

References (key guidance you can cite in notes)

- ACG 2022 GERD Guideline—diagnosis, when to test off/on PPI, pre-ARS HRM, and TIF selection. Lippincott+1
- Lyon Consensus 2.0 (2024)—AET thresholds, MNBI cutoffs, PSPW retired. gut.bmj.com+1
- SAGES 2024 Hiatal Hernia Guideline—who to repair, fundoplication during PEH repair; shared decision-making emphasis. PubMed+1
- JAMA Surg 2024—no routine non-absorbable mesh at hiatus (no durable benefit; more dysphagia).
 JAMA Network
- AGA CPUs (2022 personalized; 2023 EER)—personalized testing/therapy; objective testing for isolated extra-esophageal symptoms. Giboard Review+1
- FDA label (vonoprazan/Voquezna)—dosing for healing/maintenance of EE. FDA Access Data

Up next: Module 23 will move from reflux mechanics to **foreign bodies & food impaction** (adult & pediatric): triage, airway-first algorithms, extraction techniques, and prevention of post-impaction strictures.

You said:

Next

ChatGPT said

Request for GPT-5 Pro

Reasoned for 6m 11s

Module 23 — Esophageal foreign bodies & food impaction (adult-focused, with key pediatric exceptions)

Let's build a fast, safe, evidence-anchored mental model you can run at 2 a.m. The triage is *airway and clock*; the technique is *cap/overtube* + *gentle physics*; the follow-through is *biopsy/dilate/plan*.

1) Triage: who needs the scope now vs soon

Emergent endoscopy (preferably ≤2 h, no later than 6 h):

- Complete esophageal obstruction (drooling, can't handle secretions).
- Button battery in the esophagus.
- Sharp/pointed object in the esophagus.
- (Peds) multiple magnets anywhere in GI tract; single magnet in esophagus (adult magnet issues are rare but the physics are the same). <u>Esge+2www.asge.org+2</u>

Urgent endoscopy (≤24 h):

- Non-sharp esophageal foreign bodies and esophageal food impaction without complete
 obstruction
- Batteries, magnets, sharp or long objects already in stomach (don't wait beyond 24 h).
 www.asge.org+1

Non-urgent (≤72 h):

• Medium-sized blunt objects in stomach if otherwise well. PubMed

Special case (do not scope):

 Body packers/stuffers (drug packets). Observe; surgery if non-progression, obstruction, or suspected rupture. Endoscopic retrieval is discouraged because rupture can be fatal. <u>Esge+1</u>

2) First 10 minutes: airway, imaging, and meds (keep it simple)

- Airway: If secretions can't be cleared or you'll be fishing near the UES, involve anesthesia; intubate
 when aspiration risk is high (proximal obstruction, full stomach, difficult device retrieval).
 www.asge.org
- Imaging:
 - O No routine films for soft food bolus without red flags.
 - Plain AP + lateral if you suspect bone, battery/coin, sharp, magnet.
 - CT (low-dose, non-contrast) when radiographs are negative but you strongly suspect a fish/chicken bone or there's concern for perforation. Esge
- Pharmacology:
 - Avoid proteolytic enzymes (papain/meat tenderizer): real risk of caustic injury and perforation.
 - Glucagon doesn't improve clearance vs placebo and causes more adverse events; do not let it delay endoscopy.
 - Effervescent/carbonated beverages: mixed/low-quality evidence; not recommended if it delays endoscopy or with obstruction/aspiration risk. www.asge.org+2PubMed+2

3) Differentiate coin vs button battery (saves esophagi)

On radiograph, a **button battery** shows a **double-rim/halo sign** on AP and a **step-off** on lateral; coins are uniform. Two stacked coins can mimic a battery—treat suspicious films as battery until proven otherwise. <u>radiopaedia.org+1</u>

4) Endoscopic strategy by scenario

A. Esophageal food bolus (most commonly meat)

Technique priorities

- Push technique is first-line and safe when gentle (success >90%). Try to pass the scope alongside to
 assess distal lumen; if resistance is significant or sharp fragments are present, stop pushing and
 convert to piecemeal pull/debulking. Esge
- Tools: transparent cap (variceal ligation cap works) to suction and pull en bloc; Roth net, snare, rat-tooth for piecemeal; overtube for airway protection and repeated passes. Cap-assisted methods improve technical success and speed in comparative data. PMC
- Airway: consider ETT for proximal impactions with heavy secretions. www.asge.org

After clearance

- Look for the cause—> >75% have underlying pathology (Schatzki ring, peptic stricture, EoE). Take biopsies once mucosa is safe.
- Dilation: if there's a benign stricture/ring and no deep mucosal injury, same-session dilation is
 reasonable and safe; otherwise schedule early interval dilation. Poor follow-up argues for
 same-session dilation when feasible. Esge+1

B. Sharp/pointed objects (bones, pins, dentures)

- Emergent if in esophagus. Use overtube or latex protector hood/cap. Orient the point trailing on extraction to minimize injury. Intubate if aspiration risk. Esge+1
- If in stomach/duodenum: urgent (<24 h) removal (perforation risk). PubMed

C. Button battery

- Esophagus: absolute emergency (≤2-6 h).
 - Prehospital/ED (peds): honey or sucralfate may be given on the way if ingestion <12 h and age
 ≥1 y, but do not delay removal.
 - After removal, if no perforation, irrigate injury with 50–150 mL of 0.25% sterile acetic acid to neutralize residual alkali (data: piglet model + small pediatric series). Arrange CTA if deep circumferential injury or bleeding to assess for vascular fistula. Poison Control+2Poison Control+2
- Beyond esophagus: observe closely; remove urgently if retained in stomach or symptomatic.
 Frontiers

D. Magnets

Esophagus or multiple magnets anywhere reachable: remove urgently (pressure necrosis risk). Adult
ingestion is rare, but same physics apply. PMC

E. Coins (primarily peds, occasionally adults with strictures)

Asymptomatic esophageal coin may be observed for 12–24 h for spontaneous passage, but many
centers opt for earlier removal if practical. www.asge.org

5) Devices & tricks that save time (and mucosa)

- **Transparent cap**: suction-and-pull en bloc for soft bolus; visibility and control are excellent.

 Meta-analysis shows higher technical success and shorter procedure time vs conventional tools. PMC
- Overtube (25–50 cm): protects airway and mucosa; essential for repeated passes and sharp objects (longer tubes covering LES when retrieving distal sharp bodies). Esge
- Protector hoods/latex caps: create a smooth profile for sharp edges. PMC

6) Post-procedure: don't stop at "it's out"

- Document injury grade and immediately manage complications (hemorrhage, deep laceration, suspected perf → CT, surgery).
- EoE work-up if history or phenotype (young, atopic, recurrent impactions, rings/furrows). EoE is a leading cause of adult food impaction; inadequate biopsy at index event delays diagnosis. Plan biopsies now or very soon if mucosa is too friable. BMJ Global Health+1
- 3. Dilation strategy: if benign stricture/ring and minimal trauma, same-session dilation is supported by observational data; otherwise early interval dilation. Target ≥16 mm over sessions for long-term relief in EoE strictures. PubMed+1
- **4. Secondary prevention**: PPI for peptic disease; EoE therapy (topical steroids/elimination diet) if confirmed; denture counseling; magnet/battery safety education.

7) What *not* to do (common pitfalls)

- Don't delay endoscopy while trying glucagon or cola; if you try anything, it must not postpone a
 timely scope. The evidence for glucagon is negative; effervescent drinks show at best inconsistent
 benefit. PubMed+1
- **Don't push** against resistance—hidden stricture or sharp edges increase perforation risk. Switch to piecemeal retrieval and protect the airway. Esge
- Don't use proteolytics (papain/meat tenderizer). Ever. www.asge.org
- Don't scope body packers/stuffers. Observe; surgical consult if non-progression/rupture suspected.

8) One-page mental algorithm (adult)

Airway & clock \rightarrow emergent vs urgent (see §1) \rightarrow Imaging if indicated (bones/battery/magnet/sharp, or suspect perforation) \rightarrow Room readiness (overtube/cap, nets, rat-tooth, snares; anesthesia if proximal/secretions) \rightarrow Technique

- Food bolus: try scope-bypass, then gentle push; if not, cap + piecemeal retrieval ± overtube.
- Sharp: overtube/cap, point trailing, retrieve; intubate liberally.
- Battery (esophagus): emergent removal, 0.25% acetic acid irrigation if no perf.
- Magnet(s): urgent removal if reachable.
 Aftercare: inspect, manage injuries, biopsy/dilate, schedule follow-up and disease-specific therapy.
 Esge+2Esge+2

Evidence backbone used above

ESGE adult guideline on foreign bodies (timing, technique; push method; protection devices); ASGE practice guideline (timing, airway, coins, sharp objects, body packers); pediatric task forces for magnets/button batteries (honey/sucralfate + 0.25% acetic acid irrigation), and meta-analyses/series on cap assistance and same-session dilation. Key sources: ESGE 2016 guideline; ASGE 2011 guideline; ESPGHAN/NASPGHAN/Poison Control button battery resources; magnet ingestion guidance; cap-assisted meta-analysis; glucagon meta-analysis; adult food-impaction outcomes/dilation studies. PubMed+6PubMed+6www.asge.org+6

Up next (Module 24): iatrogenic and caustic esophageal injuries (including perforation recognition, WSES/ASGE/ESGE algorithms, timing of surgery vs stent, and how to not turn a small tear into a big problem).

You said:

Next

ChatGPT said:

Request for GPT-5 Pro

Reasoned for 5m 39s

Module 24 — latrogenic esophageal injury & post-procedure complications

Keep calm, switch to CO₂, close the hole, divert the flow, drain the swamp, feed distally.

What you'll master

- A first-minutes checklist when injury is suspected (how to stabilize, when to CT, who to call). PubMed
- Device-by-size closure logic you can run under pressure (TTS clip, OTSC, stent, EVT), with realistic dwell times. Esge+2Esge+2
- Complication-prevention moves during dilation, EMR/ESD, POEM, stenting, and how to document AEs cleanly. PMC+2Esge+2

A) The first 10 minutes when you suspect a perforation (any esophageal procedure)

- Stop and stabilize: NPO, IV broad-spectrum antibiotics, analgesia. Switch insufflation to CO₂ immediately (less gas trapping, faster absorption). If there's tension capno-pneumoperitoneum/mediastinum, decompress. Thieme+1
- Image early: contrast-enhanced CT of neck/chest/abdomen to size the defect, map air/fluid, and look for collections—this is now guideline language for suspected iatrogenic perforation. <u>PubMed</u>
- Call your friends: thoracic surgery and interventional radiology—endoscopic closure usually succeeds, but drainage/back-up saves lives. (WSES framing for EP in general.) <u>BioMed Central</u>

B) Pick the closure by the physics (size, edges, contamination)

 ${\it ESGE~2020~iatrogenic~perforation~update-pragmatic~rule-set}$

- ≤10 mm: TTS clips (through-the-scope).
- >10 mm (good tissue): OTSC (cap-mounted).
- Large/elongated (~≥20 mm), friable edges, or when you need diversion: fully covered SEMS; plan removal ~6–8 weeks (max ≈3 months) to limit embedment. Pair with drainage when there's contamination. Esge+2Esge+2

EVT (endoscopic vacuum therapy)

Think cavity + sepsis or failed stent: sponge in the defect/cavity on suction with exchanges every
3-4 days; series and meta-analyses show higher closure and lower mortality vs SEMS in selected
leaks. Use intraluminal EVT for small/no collections; intracavitary when the collection is sizable.
PMC+2PMC+2

Stent dwell-time reality check

Typical clinical practice: 2–4 weeks for anastomotic leaks, ~4 weeks for perforations in surgical
series; ESGE advises remove by 6–8 weeks (absolute ≤3 months) to reduce embedment and pressure
necrosis. Individualize to healing on imaging/endoscopy. Annals of Thoracic Surgery+2Karger
Publishers+2

C) Procedure-specific prevention & rescue

1) Esophageal dilation (bougie/balloon)

- Wire-guided, graded strategy; map complex anatomy with contrast when needed; CO₂ insufflation if
 you anticipate prolonged insufflation. Perforation risk is low but real; complex/caustic/radiation
 strictures raise it. PMC
- The classic "rule of 3" (≤3 bougie sizes per session) is a conservative heuristic; modern series show
 no clear increase in AEs when individualized under vision. Don't force blind passes. PubMed
- If a tear happens: stop dilation, CO₂, close if you can (TTS/OTSC by size), CT to stage, antibiotics/NPO, and plan diversion/drainage or stent/EVT per section B. Esge+1

2) EMR/ESD (early neoplasia)

- CO₂ always; avoid over-distension; mark, inject, cut in plane. Immediate microperfs are usually clip-closeable; ESGE explicitly recommends closing immediate perforations with clips (TTS or OTSC depending on size/shape). Esge
- Bleeding: endoscopic hemostasis (coagulation/clip); powders as rescue. Document with the ASGE AE lexicon (severity, causality, outcome). Esge+1
- Post-ESD strictures (long/circumferential resections): mitigate with local or oral steroids and/or
 tissue shielding (e.g., PGA sheets) per center practice; we covered details in earlier modules—recur
 early, so schedule close follow-up. Esse

3) POEM (achalasia & spastic disorders)

- General anesthesia + CO₂; expect capno-mediastinum/-peritoneum—treat symptomatic/tension states with needle decompression and ventilator adjustments. PMC
- Mucosal injury during tunneling: close it (TTS clips or endoscopic suturing) and confirm watertight seal. Post-POEM symptomatic leak → manage as above (clip/OTSC/stent/EVT + drainage). Esge

4) Stenting (leaks, strictures, palliation)

 For benign leaks/perforations/RBES, use fully covered devices and plan early removal (see dwell-time). Secure fixation (suture/clip) reduces migration. Monitor for pressure necrosis and new pain (rare AEF concern if near aortic repairs). Esge

D) When endoscopy isn't the whole answer

Non-operative management (NOM) works for stable, early, contained perforations with minimal
contamination—BUT image-guided drainage is usually part of "NOM." Escalate if the patient
deteriorates; WSES lists surgery principles when needed (debride, close, buttress, drain). PMC+1

E) Sedation, gas, and documentation (unsexy, crucial)

- Prefer CO₂ over air across advanced esophageal work—less post-procedure pain and less dangerous
 gas in bad moments. e-ce.org+1
- Use the ASGE adverse-event lexicon (and 2022 EGD AE update) to classify and report events consistently—this protects patients and your team. PubMed+1

F) Quick algorithms (clipboard)

Suspected iatrogenic perforation (any esophageal case)

 CO_2 on \rightarrow NPO + IV abx \rightarrow CT neck/chest/abdomen \rightarrow If small & clean: TTS (\leq 10 mm) or OTSC (>10 mm). Larger/long/subtle edges: FC-SEMS (remove 6–8 wk); cavity/sepsis or stent-fail: EVT with 3–4 d exchanges \rightarrow Drain collections and feed distal. Surgery if unstable or non-contained. PMC+3Esge+3PubMed+3 Immediate ESD microperf

Clip close **now** (TTS/OTSC), **CO**₂, antibiotics; finish only if safe plane remains; otherwise abort and stage on CT. Esge

Dilation-related deep tear

Abort, CO₂, CT, clip/OTSC if feasible; if long or ragged → stent + drainage; observe closely. Esge

G) Numbers you should actually remember

- Clip thresholds: ≤10 mm TTS, >10 mm OTSC, ≥~20 mm or friable → stent. Esge
- Stent dwell for benign leaks/perfs: plan ~6–8 weeks, ≤3 months max; many thoracic teams remove earlier (~2–4 wk) once sealed. <u>Karger Publishers+2PubMed+2</u>
- EVT: sponge change q3-4 days; higher closure and lower mortality vs SEMS in selected series. PMC
- CO₂ > air for comfort and safety signals across advanced endoscopy. e-ce.org

H) Pitfalls that make small holes big

- Sticking with air after a microperf—switch to CO₂; gas physics matter. PMC
- Closing the hole but not draining the cesspool—undrained collections tank NOM. CT-guided drainage partners with endoscopic closure. <u>BioMed Central</u>
- "Rule-of-3" fundamentalism—use judgement under visualization; don't force blind up-sizes.
 PubMed
- I carried having staget to be low and advance and apparent into price with time a plan game and

Leaving benign stents too long—embedment and pressure injury rise with time; plan removal.
 PubMed

I) Mini-cases (10-minute drills)

1. Dilation → chest pain; endoscopist sees 6–8 mm slit at 30 cm.

Plan: CO₂, TTS clips, NPO, IV abx \rightarrow CT to confirm containment \rightarrow observe with low threshold to drain if fluid collects. Esge+1

2. EMR on Barrett's island; tiny "black hole" opens in distal esophagus.

Plan: Immediate clip closure (TTS likely enough), CO₂, abx, short obs; proceed only if safe; otherwise abort, scan, and reschedule. Esge

3. POEM day-0: rising airway pressures, crepitus.

Plan: Ventilate with **CO₂-aware** settings, needle-decompress if tension; complete mucosotomy closure; **CT** if symptomatic; escalate only if leak/collection. <u>PMC</u>

4. Staple-line leak post-esophagectomy with mediastinal collection.

Plan: EVT (intracavitary if big collection) or FC-SEMS if anatomy favors diversion; drain collections; reassess every 3–4 days (EVT) and remove stent 6–8 wk if sealed. PMC+1

J) Documentation that future-you will thank you for

- Describe the defect (size, location, edges), device(s) used, closure success, gas used (CO₂), antibiotics, and post-closure plan (NPO, imaging, drains, nutrition).
- Classify the event using the ASGE adverse-event lexicon and include outcome/level of care. www.asge.org+1

Anchor references

- ESGE 2020 iatrogenic perforation update—clip/stent thresholds; CT first when suspected; CO₂; diversion/decompression. Esge+2PubMed+2
- ESGE 2021 esophageal stent guideline—temporary FC-SEMS for benign leaks/perforations; removal timing. Esge+1
- EVT evidence—reviews/meta-analyses showing high closure rates and advantages vs SEMS in selected settings; exchange q3–4 days. PMC+1
- BSG 2018 dilation guideline & modern data—safe graded dilation; nuance on the "rule of 3." PMC+1
- ASGE 2022 EGD AE update & AE lexicon—how to classify/report what happened. www.asge.org+1
- CO₂ over air—less pain/safer gas dynamics across advanced cases. e-ce.org

Next — **Module 25: Esophageal infections & immunologic conditions** (HSV/CMV/candida, pill esophagitis, GVHD)—pattern recognition, biopsy tricks, and treatment timelines that actually work.

You said:

Next
ChatGPT said:

Request for GPT-5 Pro

Reasoned for 5m 22s

Module 25 — Drug-induced & immune-mediated esophageal injury (pills, ICIs, EDS, GVHD)

The esophagus is a drama queen about pills and the immune system. Wrong drug, wrong posture, wrong immune switch—and you get ulcers, sloughing sheets of mucosa, or steroid-needing toxicity. Here's the tidy, GI-level playbook.

Learning goals

- Spot pill esophagitis fast (culprit list, risk factors, classic endoscopic patterns) and give prevention instructions with real numbers that actually work. NCBI
- Diagnose and treat esophagitis dissecans superficialis (EDS)—the sloughing mimic that looks terrifying but is usually benign. PMC+1
- Manage immune checkpoint inhibitor (ICI)-related upper-GI toxicity using grade-based algorithms (hold vs steroids vs biologics). <u>PubMed+2Annals of Oncology+2</u>
- Recognize esophageal GVHD patterns and coordinate immunosuppression, nutrition, and dilation when scars form. PMC+1

A) Pill-induced esophagitis — pattern, culprits, prevention

Who's at risk (mechanics matter): bedtime dosing, insufficient water, recumbency, xerostomia, strictures/hiatal hernia, and delayed transit in the mid-esophagus (aortic arch compression zone). NCBI Common offenders & tells

- Antibiotics (esp. doxycycline, clindamycin) → abrupt odynophagia; mid-esophageal "kissing" ulcers.
- Bisphosphonates (alendronate ≫ risedronate) → severe erosive/ulcerative esophagitis; prevent
 with label-mandated technique: take with 6–8 oz (≈200–240 mL) plain water, on an empty stomach,
 remain upright ≥30 min. Avoid in patients who cannot stay upright or with esophageal
 abnormalities. FDA Access Data+1
- Potassium chloride (SR forms), ferrous sulfate, NSAIDs/aspirin → corrosive contact injury; mid-distal ulcers/erosions. NCBI

Dabigatran (tartaric-acid core) → longitudinal sloughing casts in mid/distal esophagus; symptomatic dysphagia/odynophagia. Prevalence of endoscopic injury reported around ~20% in series.
 Management: optimize ingestion technique (large water + upright), consider switching agents, add PPI; most cases resolve after withdrawal. Wiley Online Library+2Lippincott Journals+2

Diagnosis: history + endoscopy (erythema/erosions, discrete ulcers, pill coating or fragments; often **mid-third**). Biopsy is for excluding mimics. NCBI

Treatment: stop/switch the culprit, PPI short-course, sucralfate for mucosal protection; liquids or alternate formulations in high-risk patients. Expect symptom resolution in ~1 week; dilate later if a stricture appears. Prevention you should document: ≥200–250 mL water, stay upright ≥30 min, avoid bedtime dosing. NCBI

B) Esophagitis dissecans superficialis (EDS, "sloughing esophagitis")

What it is: superficial sheet-like sloughing of squamous mucosa; striking endoscopic membranes/plaques that may peel—often with minimal inflammation. Think medications (NSAIDs, bisphosphonates, DOACs), hot beverages, caustic exposures, autoimmune bullous disease, celiac; sometimes idiopathic. PMC+1 Endoscopic & histologic fingerprints: long vertical cracks, strips of whitish slough; histology shows superficial necrosis/parakeratosis. Don't mistake it for candidiasis—the slough peels in sheets rather than friable plaques. PMC+1

Management: remove triggers, **PPI**, gentle diet; most cases resolve. Treat any associated condition (e.g., autoimmune). Reserve dilation for fixed sequelae (rare). <u>PMC</u>

C) Immune checkpoint inhibitor (ICI)—related esophagitis/gastritis (upper-GI irAEs)

Clues: odynophagia, chest pain, nausea/vomiting, hematemesis during PD-1/PD-L1/CTLA-4 therapy; endoscopy shows diffuse erythema, erosions/ulcers; always biopsy (rule out infection and grade inflammation). PMC

Grade-based management (ASCO/NCCN/ESMO aligned):

- Grade 1 (mild): continue ICI with close monitoring, start PPI ± sucralfate; test/treat infections.
 PubMed
- Grade ≥2 (moderate—severe pain, bleeding, inability to eat): hold ICI, start systemic corticosteroid (e.g., prednisone 0.5–1 mg/kg/day or IV equivalent); taper over ≥4–6 weeks after improvement to ≤grade 1. PubMed+1
- Steroid-refractory (no improvement ~48–72 h): add infliximab or vedolizumab per multidisciplinary discussion; restart ICI cautiously only after resolution and steroid taper. (NCCN updates emphasize individualized re-challenge.) PubMed

Supportive: nutrition, analgesia, antifungal prophylaxis if prolonged steroids, and **repeat endoscopy** if symptoms persist or bleed. PubMed

D) Esophageal involvement in graft-versus-host disease (GVHD)

Signals: post-allo-HSCT patient with upper-GI symptoms (nausea, anorexia, dysphagia/odynophagia); **endoscopic findings may be normal** or show erosions/ulcers, sloughing; diagnosis is **histologic** (apoptotic bodies/crypt dropout). PMC+1

Management: coordinate with transplant team—**systemic steroids** remain first-line for GI-GVHD; escalate immunosuppression if refractory. Esophageal sequelae (webs/strictures) may need **graded dilation** once inflammation is controlled. **AstCT Journal**

E) Practical algorithms (clipboard)

Suspected pill esophagitis

History (culprit + posture/water) \rightarrow EGD if severe/persistent \rightarrow stop/switch drug, PPI + sucralfate, counsel: ≥200–250 mL water & upright ≥30 min (bisphosphonate labels specify 6–8 oz and 30 min) \rightarrow re-evaluate; dilate later if stricture forms. NCBI+1

EDS

Recognize **sheet-like sloughing** \rightarrow exclude candida/mimics \rightarrow remove triggers + **PPI** \rightarrow follow-up; treat associated autoimmune disease if present. PMC

ICI-related upper-GI irAE

Scope + biopsies to exclude infection \rightarrow grade severity \rightarrow hold ICI for \geq grade 2 \rightarrow prednisone 0.5–1 mg/kg/day (or IV equivalent) \rightarrow taper 4–6 wk when improved \rightarrow infliximab/vedolizumab if steroid-refractory \rightarrow cautious re-challenge. PubMed+2Annals of Oncology+2 GVHD esophagus

Scope + biopsies (even if macroscopically normal) \rightarrow systemic immunosuppression per transplant protocol \rightarrow late dilation for webs/strictures. PMC+1

F) Pitfalls & board-style traps

 Treating suspected pill injury with endless PPIs but not stopping the culprit—the fix is behavioral + drug switch first NCRI

- arag switch mate Itobi
- Forgetting label technique for alendronate (water + upright 30 min) or using it in patients who cannot stay upright. That's how you get perforating ulcers. FDA Access Data
- Calling EDS "candidiasis" and giving unnecessary antifungals—peeling sheets and minimal friability point away from candida. PMC
- Missing dabigatran as the cause of sloughing injury; look for "longitudinal casts" on EGD and adjust anticoagulation. Lippincott Journals
- Restarting ICI too soon after grade ≥2 toxicity or without a proper steroid taper—recurrence risk climbs. PubMed

G) 10-minute drills (mini-cases)

- 22-year-old after midnight doxycycline; abrupt odynophagia. EGD: mid-esophageal twin ("kissing")
 ulcers.
 - Plan: Stop doxy; start PPI + sucralfate; counsel ≥200–250 mL water/upright ≥30 min, avoid bedtime pills; expect rapid resolution. NCBI
- 72-year-old on weekly alendronate; chest pain after dose; EGD: distal erosions/ulcers.
 Plan: Hold alendronate; strict label ingestion technique if re-tried or switch agent; PPI; reassess for stricture. FDA Access Data+1
- 3. A-fib on dabigatran; dysphagia; EGD shows longitudinal sloughing casts.

 Plan: Stop/switch anticoagulant; PPI; hydration/upright technique; symptoms usually improve
- quickly. <u>Lippincott Journals+1</u>
 4. Melanoma on pembrolizumab; week-10 severe odynophagia, LA-D esophagitis on EGD, infections
 - ruled out.

 Plan: Hold ICI, start prednisone ~1 mg/kg/day, taper ≥4–6 wk; if no improvement in 48–72 h, add infliximab/vedolizumab; nutrition support; discuss timing of re-challenge with oncology. PubMed+1
- 5. Allo-HSCT day 60; anorexia, nausea, mild dysphagia; EGD visually subtle; biopsies show apoptotic injury.
 - Plan: Treat GI-GVHD per transplant team (systemic steroids first-line), escalate if refractory; nutrition; later dilation if fixed narrowing. PMC+1
- White sheets in esophagus, minimal friability.
 Plan: EDS—stop triggers (NSAID), PPI, avoid aggressive debridement; follow-up endoscopy only if persistent. PMC

One-page takeaway

- Pill injuries are mechanical + chemical: fix technique (≥200–250 mL water, upright ≥30 min, no bedtime dosing), stop/switch the culprit, and give short-course PPI/sucralfate. NCBI
- EDS looks scary but is usually benign; treat triggers + acid, not fungus. PMC
- ICI esophagitis/gastritis: grade it, hold ≥grade 2, steroids first, biologics if refractory, then cautious re-challenge. PubMed+2Annals of Oncology+2
- GVHD can be subtle endoscopically; biopsy early, treat systemically, and dilate scars late. PMC

Next — **Module 26: Esophageal stents (malignant, benign, and leaks)**: device selection (covered, partially covered, fully covered), placement tricks, fixation, and complication rescue (migration, pain, pressure necrosis).

You said:

Next

ChatGPT said:

Request for GPT-5 Pro

Reasoned for 5m 36s

Module 26 — Esophageal stents (malignant, benign, and leaks): selection, technique, and rescue Stents are controlled force: choose the right metal tube, deploy it precisely, secure it if needed, and plan your exit. Do that and you'll turn dysphagia, leaks, and fistulas into solvable physics problems.

What you'll master

- When to use SEMS (self-expandable metal stents) for malignant dysphagia, benign refractory strictures, and leaks/perforations/TEF, and when another therapy (e.g., brachytherapy or EVT) will outperform a stent. <u>Esge+1</u>
- Device selection (fully vs partially covered, anti-reflux valve or not, diameter/length) and fixation (sutures vs OTSC) to minimize migration. <u>Esge+2PubMed+2</u>
- Dwell times you can defend on rounds: 4–8 weeks for leaks/perforations, ≤3 months max for benign strictures; malignant palliation = indefinite (if goals stay palliative). Esge
- Complication prevention & bailout: pain, reflux, occlusion, migration, bleeding, airway compression, embedment—plus the stent-in-stent trick for embedded PCSEMS. Esse

1) Indications (and good alternatives)

Malignant dysphagia (palliation)

 SEMS (FC or PC) are guideline-endorsed for fast relief. If a patient's life expectancy is longer, brachytherapy achieves more durable dysphagia control with fewer major AEs; SEMS can be used for immediate symptom relief or when brachy isn't available. Esse miniculate symptom rener or when brachy isn cavanasie. Esse

Benign disease

- Refractory benign stricture (RBES): stents are not first-line; consider temporary FC-SEMS after failed dilation ± steroid/incisional therapy. Remove by ≤3 months to avoid embedment. Esge
- Leaks/perforations/fistulas: temporary FC-SEMS is an accepted option; success improves with early recognition and drainage of collections. Typical dwell ≈6–8 weeks; many centers pull earlier once sealed. Esge

Vs. EVT (endoscopic vacuum therapy) for post-surgical leaks

EVT often yields higher closure and fewer complications than SEMS in selected leaks, but needs
more exchanges; a multimodality approach (EVT ± stent ± drainage) is common in complex cavities.
Esge+2PMC+2

2) Device selection: FC-SEMS vs PC-SEMS, anti-reflux valves, size

Covering

- Malignancy: FC-SEMS and PC-SEMS perform similarly overall; choose with an eye to anticipated removal (FC easier) vs migration risk (PC sometimes lower but risks ingrowth). Avoid SEPS (more migration/AEs). Esge
- **Benign strictures**: **prefer FC-SEMS** to avoid embedment; if a PC-SEMS embeds, use **stent-in-stent** to free it. Esge

Anti-reflux valve?

 When crossing the GEJ, anti-reflux stents do not show durable superiority over standard SEMS for reflux/quality-of-life; use PPI and lifestyle rather than paying for a valve that rarely changes outcomes. Esge+1

Diameter & length

Typical mid-esophagus diameters 18–23 mm (check your device line); ensure ≥1–2 cm coverage beyond each lesion/fistula margin (manufacturers often specify >1 cm; many interventional series aim ~2 cm). Don't irritate the UES with excessive proximal coverage. www.bostonscientific.com+1

3) Fixation (migration happens—plan for it)

Endoscopic suturing and OTSC-based "stent-fix" clips both reduce migration vs no fixation; comparative data are mixed (some show OTSC lower migration than suturing, others show sutures effective). Choose based on location (GEJ/short landing zones), recurrence history, device availability, and cost. PubMed+2tigejournal.org+2

4) Technique that works (malignancy, benign, and leaks)

Pre-room

 Review imaging, define lesion length, and map a landing zone that won't impale the UES or the stomach excessively. If severe narrowing prevents device passage, gentle pre-dilation with a small (10–12 mm) balloon may help; avoid aggressive dilation due to perforation risk. PMC+1

In-room steps

- 1. Airway strategy (GA or deep sedation for proximal lesions/aspiration risk).
- Mark margins endoscopically (clips, contrast) and deploy under endoscopic ± fluoroscopic guidance. Ensure 2-point coverage beyond the lesion/fistula. SpringerLink
- Confirm expansion and position; consider contrast swallow or endoscopic check if a leak/fistula is being treated.
- For leaks/TEF, drain any collections (interventional radiology) and plan enteral feeding while the stent diverts flow. Esge

Aftercare essentials

- Diet: liquids for 24–48 h while the stent fully expands, then soft foods; avoid sticky/doughy breads, tough meats, stringy/raw veg, and drink with bites to prevent occlusion. Sit upright during/after meals. University Health Network+2dbth.nhs.uk+2
- Reflux (GEJ-crossing stents): start/continue PPI; anti-reflux valves aren't reliably superior. PMC
- Pain: expect transient chest pain—treat; severe/worsening pain merits early reassessment. (Higher AE rates after chemoradiation—counsel accordingly.) Esge

5) Dwell-time clipboard (what to write in the plan)

- Benign leaks/perforations: plan removal around 6–8 weeks (many pull at ~4–5 weeks if sealed).
 Esge
- Refractory benign strictures: remove by ≤3 months (earlier if symptoms allow). Esge
- Malignancy: palliative/indefinite (re-intervene for migration/occlusion/overgrowth). Esge
- Variceal stent (Danis): salvage bridge after failed EVL/medical therapy; intended in situ up to ~
 7 days, then remove and move to definitive therapy (often early TIPS). PubMed+1

6) Special scenarios you'll meet

A) Tracheo-esophageal/broncho-esophageal fistula (malignant)

• Goals: **seal the esophagus, protect the airway, treat the cancer**. Many centers **stent the airway first** if there's compression or large TEF, then place an **FC-SEMS** in the esophagus; consider **double**

Challenges in Thoracic Surgery+1

B) Prior chemoradiation

 Stent-related life-threatening complications (bleeding/fistula) are higher post-CRT; consent and vigilance must match the risk. Esge

C) Proximal lesions (near UES)

 Expect more globus/pain; use shorter stents and precise landing; consider fixation. (Symptom intolerance drives revisions here.) Practical Gastro

7) Complications & rescue

- **Migration** (commonest): confirm position; if recurrent, **fixate** (sutures or OTSC) or upsize length/diameter; for embedded PC-SEMS, use **stent-in-stent** removal. PubMed+2ScienceDirect+2
- Food impaction/occlusion: endoscopic clearance; review diet coaching and chewing technique.
 University Health Network
- Bleeding/perforation/pain: supportive care → targeted intervention; reconsider therapy in post-CRT patients. Esge
- Airway compromise (tumor compression or proximal expansion): urgent ENT/IP assessment; airway stent may be life-saving. <u>ERS Publications</u>

8) Numbers to remember (high-yield)

- Coverage: ≥1-2 cm beyond both ends. www.bostonscientific.com+1
- Benign leak/perf dwell: aim ~6–8 weeks; pull sooner if healed. Esge
- RBES dwell: ≤3 months max; FC-SEMS preferred. Esge
- Anti-reflux valves: not reliably better than standard SEMS. Esge
- EVT vs SEMS for post-op leaks: EVT often shows higher closure/fewer AEs in comparative studies; use selectively or combine. PMC
- Variceal Danis stent: salvage, remove ≤7 days, bridge to TIPS when appropriate. NICE

9) Mini-algorithms (clipboard)

Malignant dysphagia (no TEF)

- 1. Confirm goals = palliation.
- Choose FC-SEMS or PC-SEMS (similar outcomes); cover ≥1-2 cm margins; consider fixation at GEJ/short landings.
- 3. PPI if crossing GEJ; diet coaching; plan follow-up for migration/overgrowth. If expected survival is longer, discuss brachytherapy (± stent for immediate relief). Esge

Benign leak/perforation

- 1. Drain collections, FC-SEMS to bridge defect.
- 2. Nutrition support; antibiotics per sepsis picture.
- 3. Re-image in 1–2 weeks; plan removal ~4–8 weeks if sealed; convert to EVT if cavity persists or stent fails. Esge+1

RBES after failed dilation/steroids

- ${\bf 1.} \quad {\bf Place} \ {\bf FC\text{-}SEMS}; \ consider \ {\bf fixation} \ if \ prior \ migration.$
- Schedule removal ≤3 months; if two well-executed stent trials fail, pivot (self-dilation or surgery).

 Esge

Malignant TEF

- Airway-first if compromise risk → airway stent → esophageal FC-SEMS; large/persistent defects →
 double stent.
- 2. Treat cancer, optimize nutrition, watch for aspiration. Current Challenges in Thoracic Surgery

Variceal hemorrhage (refractory to EVL/vasoactives)

- 1. Deploy **Danis stent** as **salvage**; resume stabilization and plan **definitive therapy** (often **TIPS**).
- 2. Remove ≤7 days. PubMed+1

10) Pitfalls that cause headaches (and morbidity)

- Using SEPS or uncovered stents for malignancy—higher migration/ingrowth; SEMS (FC/PC) are preferred. <u>Esge</u>
- Counting on anti-reflux valves to fix GEJ reflux—evidence doesn't support routine use; treat reflux medically. <u>Esge</u>
- Forgetting the cavity in leaks—stent without drainage fails often; partner with IR. Esge
- Leaving benign stents too long—embedment risk climbs; plan the pull at the time you place. Esge
- Post-CRT patients: higher risk of catastrophic AEs; consent explicitly and monitor closely. Esge

One-page takeaway

- Match therapy to biology & goals: SEMS palliate fast; brachytherapy lasts longer in selected
 malignant cases; EVT often best for post-op leaks; FC-SEMS for RBES/leaks with timely removal.

 <u>Esge+1</u>
- Deploy deliberately: correct length/diameter, ≥1-2 cm margins, fixate if migration risk, start PPI if across GEJ, and teach the diet. www.bostonscientific.com+1
- Think extense airway with TEE drain collections schedule removal, and document a plan R (EVT

re-stent, surgery). Esge

Next — Module 27: Esophageal cancer (SCC & adenocarcinoma)

Staging that matters (T/N/M by EUS/CT/PET), who gets **EMR/ESD** vs **neoadjuvant chemoradiation** vs **surgery**, and modern **systemic therapy** contours—then tie it back to everything we've built (Barrett, stents, leaks).

You said:

Next

ChatGPT said:

Request for GPT-5 Pro

Reasoned for 5m 27s

Module 27 — Eosinophilic esophagitis (EoE): diagnosis you can trust, therapy you can tailor, scars you can prevent

Inflammation writes the opening act; fibrosis tries to steal the ending. Your job is to stop the rewrite: prove EoE cleanly, calm the fire, keep the tube wide.

What you'll master

- Modern diagnosis: symptoms of esophageal dysfunction plus ≥15 eos/hpf on adequate biopsies, without requiring a PPI "trial"; how to scope off therapy; how to use EREFS every time. medils.com
- First-line treatments you can defend (and dose correctly): high-dose PPI, swallowed topical steroids
 (now including budesonide oral suspension, EOHILIA), empiric step-up diets (start less restrictive),
 and dupilumab when you need biologic force. regeneron.com+3medils.com+3FDA Access Data+3
- Fibrostenosis control: when to dilate (and to what diameter), while keeping anti-inflammatory therapy running in parallel. medils.com+1

A) Diagnosis that doesn't wobble

Core criteria

 Symptoms of esophageal dysfunction (dysphagia, food impaction, chest pain, feeding issues in kids) and peak ≥15 eos/hpf on esophageal biopsy after considering other causes of eosinophilia. No PPI trial is required to "unmask" EoE under current guidance. medils.com

How to scope well

Hold active EoE therapies (diet restrictions, PPI, swallowed/inhaled steroids) when feasible to
maximize diagnostic yield. Take ≥6 biopsies from ≥2 levels (proximal/mid and distal), targeting
endoscopic abnormalities. Quantify eosinophils at every EoE endoscopy. Use EREFS to grade edema,
rings, exudates, furrows, strictures. medils.com

Staging severity (why it helps choices)

 Consider the I-SEE tool to capture inflammatory vs fibrostenotic burden and track response over time; it complements histology and EREFS. <u>American Gastroenterological Association+1</u>

B) Initial therapy: pick a lane, measure, then iterate

1) Proton pump inhibitor (PPI)

 Guideline-endorsed EoE therapy; start high-dose (e.g., omeprazole 20–40 mg BID or equivalent), then assess with EGD + biopsies at ~8–12 weeks. Maintain if effective. medils.com

2) Topical steroids (swallowed) — now with an FDA-approved oral suspension

- Budesonide oral suspension (EOHILIA): 2 mg PO BID for 12 weeks, taken without food or liquids
 and nothing by mouth for ≥30 min after. Indicated for age ≥11 years; U.S. label does not include
 maintenance beyond 12 weeks. FDA Access Data
- Practical tips for any swallowed steroid (budesonide slurry/orodispersible tablet; fluticasone MDI swallowed): give after meals or at bedtime and keep NPO 30–60 min to maximize mucosal contact; budesonide and fluticasone have similar efficacy in head-to-head data. Continue a maintenance plan once you achieve histologic response. American College of Gastroenterology

3) Diet (empiric, step-up beats maximalism)

Contemporary guidance encourages starting less restrictive (e.g., 1-food dairy-only elimination or 2-food dairy+wheat), then step up if needed; check histology after 8–12 weeks. In adults, the 1-FED vs 6-FED RCT found similar remission rates at 6 weeks, supporting a "start simple" strategy. Avoid allergy-test-directed diets for routine care. medils.com+2PubMed+2

4) Biologic therapy (when inflammation shrugs at the rest)

Dupilumab is FDA-approved for EoE in patients ≥1 year, ≥15 kg. Weight-based dosing: 15–<30 kg: 200 mg Q2W; 30–<40 kg: 300 mg Q2W; ≥40 kg: 300 mg QW. Guidelines suggest it for patients nonresponsive to PPI (adolescents/adults and pediatrics), with shared decision-making around injectables and cost. regeneron.com+2FDA Access Data+2

Monitoring rule: Symptoms can mislead. Re-scope with biopsies after 8–12 weeks of a new regimen (PPI, steroid, or diet) and aim for histologic remission (often defined as <15 eos/hpf, some trials use ≤6 eos/hpf). Then choose a maintenance plan—EoE is chronic. medils.com+1

C) Fibrostenotic disease & dilation

In EoE with a fixed narrowing or recurrent food impaction, dilation is safe and effective—as an adjunct to anti-inflammatory therapy (never monotherapy). Target a lump of ~16—18 mm, usually

over ≥1 session(s) depending on baseline caliber and mucosal effect. Expect mucosal tears ("dilation effect") and transient chest pain; perforation is rare in experienced hands. EndoFLIP can help identify stiff segments that look "normal." medils.com+1

D) Practical algorithms (clipboard)

Suspected EoE (adult)

- Hold therapies that suppress EoE if safe → EGD off therapy, use EREFS, take ≥6 biopsies from ≥2 levels.
- If EoE confirmed → pick one: high-dose PPI, swallowed steroid, or empiric 1-/2-food diet.
- 3. Re-EGD + biopsies at 8-12 weeks.
- 4. If improved histology → continue as maintenance (long-term) and titrate dose/adherence.
- If no response, switch lanes (diet ↔ steroid ↔ PPI) or escalate to dupilumab; evaluate for missed strictures and adherence. Add dilation for fixed narrowing. medils.com

Topical steroid technique (any formulation)

Administer after meals/bedtime → nothing by mouth 30–60 min → avoid rinsing. For EOHILIA: 2 mg
 BID x12 wk, no food/liquid at ingestion, wait ≥30 min afterward. FDA Access Data+1

Diet playbook

 Start 1-FED (dairy) or 2-FED (dairy+wheat) → re-scope 8-12 weeks → escalate (4- or 6-FED) only if needed. Partner with a dietitian; plan structured reintroduction when histology normalizes. medils.com+1

E) What to write in your report (so Future-You smiles)

- EREFS score (list each component), biopsy count & levels, peak eos/hpf at each level, and presence of basal zone hyperplasia/fibrosis.
- At follow-up: symptoms + EREFS + histology documented together; treatment lane and maintenance plan explicitly stated. medils.com

F) Pitfalls & board-style traps

- Calling it "GERD with eosinophils" and demanding a PPI trial before diagnosis—outdated. Make the diagnosis if criteria are met, then choose therapy (PPI is still a treatment lane). medils.com
- Diet maximalism first-line. The RCT data and guidelines back less-restrictive starts; reserve 4-/6-food for escalation. <u>PubMed+1</u>
- Dilation alone for a narrow, inflamed esophagus—expect relapse. Pair dilation with active anti-inflammatory therapy. medils.com
- Topical steroid technique errors (swallow then sip coffee; rinse immediately) → poor contact time, poor response. For EOHILIA, follow the label timing. FDA Access Data

G) 10-minute drills

- 1. Recurrent impactions; EGD off therapy: rings+furrows (EREFS high), peak 65 eos/hpf.
 - Start **high-dose PPI** or **EOHILIA 2** mg **BID** x12 wk, plan re-EGD in 8–12 wk; dilate if a fixed ring persists once inflammation cools. medils.com+1
- 2. Young adult prefers diet therapy.
 - Begin 1-FED (dairy) with dietitian support; if no histologic remission at 8–12 wk, step-up to 2- or
 4-FED. PubMed+1
- 3. Persistent activity after PPI and steroid; daily dysphagia; narrow caliber.
 - Add dupilumab (weight-based per label) and serial dilations to 16–18 mm over sessions; maintain topical/biologic therapy. regeneron.com+1
- 4. Patient on fluticasone MDI "not working."
 - Fix **technique** (swallow, no rinse, NPO 30–60 min) **or** switch to **EOHILIA** for 12 weeks; re-check histology. American College of Gastroenterology+1

One-page takeaway

Diagnose cleanly (symptoms + ≥15 eos/hpf, on adequate biopsies, using EREFS), treat deliberately (PPI or topical steroid or step-up diet; dupilumab when needed), and protect diameter (dilate to ~ 16–18 mm while keeping inflammation suppressed). That's how you beat the plot twist from inflammation to scar. PMC+4medils.com+4FDA Access Data+4

Next up — Module 28: Esophageal motility testing in the real world (HRM, FLIP, barium TBE)

Interpretation patterns, Lyon 2.0-adjacent acid metrics for GERD overlap, FLIP metrics that actually change management, and how to write a motility report that surgeons, allergists, and you can all use. You said:

Next

ChatGPT said:

Request for GPT-5 Pro

Reasoned for 6m 57s

Module 28 — Motility testing in the real world (HRM, FLIP, TBE): measure precisely, decide confidently Esophageal physics is not guesswork. Use the right test, run the right protocol, and interpret with modern

rules—Chicago v4.0 for HRM, standardized TBE for emptying, and FLIP panometry for opening + contractile behavior. Tie them together so your decision isn't a vibe; it's a verdict.

What you'll master

- The CCv4.0 HRM protocol (positions + provocations), and what counts as conclusive vs needs corroboration. PubMed Central+1
- EGJOO in 2025: why a manometry label is not enough without TBE and/or FLIP evidence of obstruction. PubMed Central+1
- Timed barium esophagram (TBE) that actually informs care (volumes, timepoints, tablet). <u>American Journal of Roentgenology+1</u>
- FLIP panometry: normal thresholds (EGJ-DI, RAC "rule-of-6s"), when it changes management, and how to use it during myotomy. PubMed+2CGH Journal+2

A) HRM (High-Resolution Manometry) — how to run it so CCv4.0 works for you

Protocol (CCv4.0 essentials)

- Record baseline, then single wet swallows in supine and upright positions, plus provocative tests:
 multiple rapid swallows (MRS) (supine) and rapid drink challenge (RDC) (upright). Many labs do 10
 supine and ≥5 upright wet swallows; exact counts can be tailored if aspiration risk is high. PubMed
 Central+2SPG Gastrenterologia+2
- Why both postures and provocations? They reduce false positives (especially for outlet obstruction)
 and reveal reserve (MRS) or clinically relevant obstruction (RDC). <u>ScienceOpen+2PubMed Central+2</u>

Interpretation (CCv4.0)

- Disorders of EGJ outflow (achalasia types I–III; EGJOO) are separated from disorders of peristalsis (DES, hypercontractile esophagus, IEM). IEM definition is stricter in v4.0 and now subsumes fragmented peristalsis. PubMed Central+1
- EGJOO is not "diagnosed" by HRM alone anymore. CCv4.0 asks for symptoms + HRM suspicion and supportive evidence of obstruction on TBE (ideally with a tablet) and/or FLIP before you call it conclusive and treat. <u>PubMed Central+1</u>
- Provocations:
 - MRS (five 2-mL swallows at 2-3-s intervals): normal = complete LES inhibition during MRS with augmented peristalsis after (post-MRS DCI > mean single-swallow DCI). Think of it as a stress test for peristaltic reserve. PubMed Central+1
 - RDC (~200 mL water rapidly via straw): normal = LES relaxation + esophageal deglutitive inhibition; pressurization or persistent compartmentalization during RDC supports EGJ obstruction. CGH Journal

EGJ morphology on HRM

Type I (LES & crural diaphragm (CD) overlapped), Type II (1–2 cm separation), Type III (>2 cm separation = hiatal hernia)—document it; it correlates with reflux burden and barrier competence.
 Polskie Towarzystwo Gastroenterologii

Pro move: Before labeling "EGJOO," check **posture-specific IRP** (upright thresholds differ by system), repeat swallows upright, run **RDC**, and **review meds** (opioids can mimic obstruction). Then corroborate with **TBE** and/or **FLIP**. ScienceOpen+1

B) TBE (Timed Barium Esophagram) — standardized or it's just pretty pictures

How to do it

- Patient upright, rapidly ingest 100–200 mL low-density barium (many centers use ~200 mL), then obtain frontal images at 1, 2, and 5 minutes. Measure column height (and width); consider adding a 13-mm barium tablet to flag subtle EGJ obstruction. American Journal of Roentgenology+1
- Why it matters: TBE objectively tracks emptying and predicts response/recurrence in achalasia better than symptoms alone; it's also a supportive test for EGJOO in CCv4.0. CGH Journal+1

How to read it (practical thresholds)

No single "magic" cutoff fits all labs, but as a rule-of-thumb: persistent barium column at 5 min
 (height and/or tablet hold-up) argues for physiologic obstruction—particularly compelling
 post-therapy when you're deciding on retreatment. Cite your local normals in the report. American
 Journal of Roentgenology

C) FLIP panometry — opening + contractile behavior during sedated endoscopy

What it measures

 EGJ Distensibility Index (DI) = cross-sectional area/pressure (mm²/mmHg) during stepwise balloon fills (usually 40–60 mL), plus distension-induced contractile patterns along the esophagus. PubMed Central

Normal cues you can memorize

■ EGLDI: normals are tunically >2 9_2 0 mm²/mm⊌a at 40_60 ml - values <2_2 9 are concerning for

- impaired opening (context matters). PubMed+2CGH Journal+2
- RACs ("rule-of-6s") = ≥6 consecutive antegrade contractions of ≥6 cm length at ≥6 cycles/min: that's
 a normal contractile response to distension. Lack of RACs with low EGJ-DI supports
 achalasia-spectrum. Gastro Journal+1
- Sedation doesn't abolish these signatures; recent work shows RAC triggering volumes are similar in sedated vs awake studies. JNM Journal

When FLIP changes care (AGA CPU 2025)

- At index endoscopy when manometry is pending/ambiguous and symptoms suggest EGJ
 obstruction.
- Intra-procedurally during myotomy (POEM/Heller) to titrate adequacy of LES disruption.
- After antireflux or bariatric operations if dysphagia suggests mechanical obstruction. PubMed

D) Stitching the three together — a tight diagnostic algorithm

- 1. Dysphagia or chest pain without an obvious structural cause on EGD.
 - Order HRM (CCv4.0 protocol). If HRM screams achalasia (elevated IRP + absent peristalsis with type I/II/III patterns), you're done staging. If it whispers EGJOO or is discordant, don't treat yet.
 PubMed Central
- 2. If EGJOO suspected or HRM inconclusive:
 - Do TBE (1/2/5 min ± tablet) and/or FLIP. Convergent evidence (e.g., low EGJ-DI and 5-min column or RDC pan-pressurization) → true obstruction; if not, think artifact, posture, or opioids. PubMed Central+2American Journal of Roentgenology+2
- 3. Before any antireflux/anti-obstruction surgery:
 - Ensure no occult motility disorder (HRM), and if you're doing a myotomy, consider intra-op FLIP to avoid under/over-cutting. PubMed

E) Reporting checklists (clipboard-ready)

HRM (CCv4.0 style):

Posture(s) tested, catheter system, IRP (supine & upright), DCI, DL, % failed/ineffective swallows, EGJ morphology type, MRS response, RDC findings. Explicit conclusive vs inconclusive diagnosis per CCv4.0 and whether supportive testing is present for EGJOO. PubMed Central

TBE:

Barium volume (e.g., 200 mL), timepoints (1/2/5 min), column height/width, tablet pass/fail, and a
one-liner interpretation ("objective retention at 5 min consistent with obstructive physiology").
 American Journal of Roentgenology

FLIP:

Balloon length/model; fill volumes (40–60 mL), EGJ-DI by volume, max EGJ diameter, contractile pattern (RACs present/absent; retrograde or disordered patterns if present), and the clinical bottom line ("EGJ opening impaired with absent RACs, supporting achalasia-spectrum"). PubMed+1

F) High-yield thresholds & gotchas (memorize these)

- EGJOO needs backup: Symptoms + HRM plus TBE (± tablet) and/or FLIP showing obstruction, or don't treat as EGJOO. PubMed Central+1
- RDC ≈ 200 mL fast: pan-pressurization or compartmentalization supports obstruction; normal = free flow and inhibition. <u>CGH Journal</u>
- FLIP normals: EGJ-DI >2.8-3.0 at 40-60 mL; RAC rule-of-6s = normal contractile response. PubMed+
- TBE: 1/2/5-min images; persistent column and/or tablet hold-up = objective obstruction; use it to adjudicate post-therapy failures. American Journal of Roentgenology
- Med confounders: opioids can create EGJOO- or spasm-like HRM phenotypes—context first, labels second. www.elsevier.com

G) Pitfalls & board-style traps

- Declaring EGJOO on a single supine IRP without upright, RDC, or corroboration → overtreatment risk. ScienceOpen+1
- Running HRM as "10 supine swallows and done." CCv4.0 exists to prevent exactly that. Do upright + provocations unless unsafe. PubMed Central
- Treating an "achalasia fail" based on symptoms while TBE is normal—step back; you may be chasing
 reflux or hypersensitivity. Use TBE and on-therapy impedance-pH appropriately. CGH Journal
- Reading FLIP without thresholds: an EGJ-DI of 1.5 is very different from 3.5. Write the numbers.
 PubMed

H) 10-minute drills (mini-cases)

HRM: median IRP mildly high supine, normal upright; RDC shows pan-pressurization.
 TBE shows 7-cm column at 5 min with a 13-mm tablet stuck → Conclusive EGJ obstruction (EGJOO physiology). Treat the cause (a.g. post-fundamication obstruction) rather than the label. American

physiology). Treat the cause (e.g., post-unidophication obstruction) rather than the label. <u>American</u> Journal of Roentgenology+2CGH Journal+2

- Ambiguous dysphagia; EGD normal; patient on chronic oxycodone. HRM: "spasm/EGJOO" mix.

 De-emphasize the label; address opioids, then repeat HRM and TBE/FLIP if symptoms persist.
 www.elsevier.com
- 3. Achalasia post-POEM with recurrent dysphagia.
 - TBE 1/2/5 min to quantify emptying; if retained column persists, assess EGJ-DI on FLIP to see whether the myotomy is tight/short vs downstream spasm. PubMed Central
- 4. Pre-op ARS work-up; intermittent dysphagia.
 - HRM CCv4.0 to exclude occult motility disorder; if equivocal, RDC and/or FLIP to ensure you're not wrapping an obstruction. PubMed Central+1

One-page takeaway

- HRM (CCv4.0): do supine + upright swallows and provocations (MRS, RDC). Interpret with the
 conclusive vs inconclusive mindset. <u>PubMed Central</u>
- EGJOO: needs supportive proof (TBE tablet and/or FLIP). Without it, press pause on irreversible therapy. PubMed Central
- TBE: standardized 1/2/5-min protocol with ~200 mL barium (± tablet) is your emptying truth serum.
 American Journal of Roentgenology+1
- FLIP: pair EGJ-DI and RACs; >2.8–3.0 mm²/mmHg and clear RACs = normal; low DI ± absent RACs = obstruction/achalasia spectrum. Use intra-op to titrate myotomy. PubMed+2CGH Journal+2

Next — Module 29: Achalasia & spastic esophageal disorders (DES, hypercontractile)

Type-specific therapy (PD/Heller/POEM), how I use **RDC/TBE/FLIP** to pick a path, and long-term surveillance for reflux & recurrence.

You said:

Next

ChatGPT said:

Request for GPT-5 Pro

Reasoned for 6m 59s

Module 29 — Achalasia & spastic esophageal disorders (DES, hypercontractile): fix the outlet, tame the spasm

When the gate won't open, pressure builds and the esophagus improvises—badly. Your job is to choose the right way to open the gate (achalasia) and calm the choreography (spastic disorders), using modern criteria and comparative evidence rather than vibes.

What you'll master

- Subtype-specific diagnosis and therapy for achalasia (I, II, III) under Chicago Classification v4.0 + practical "who gets PD, LHM, or POEM—and why." PMC+1
- What the RCTs actually say (POEM vs PD; POEM vs LHM) and how that changes first-line choices in 2025. JAMA Network+2PubMed+2
- Spastic disorders (DES, hypercontractile): rule out confounders (especially opioids), try meds judiciously, and know when POEM helps—and when it doesn't. Gastrojournal+2PMC+2
- Post-procedure realities: reflux after POEM, defining success (Eckardt ≤3), and how to manage recurrence or failure. PMC+1

A) Definitions & diagnostic framing (CCv4.0, quick but precise)

Achalasia = elevated EGJ relaxation pressure (IRP) with absent peristalsis; subtypes:

- Type I: absent peristalsis, no pan-pressurization.
- Type II: panesophageal pressurization ≥20% of swallows.
- Type III: spastic/"premature" distal contractions (DL <4.5 s) with impaired LES relaxation. PMC Spastic disorders (non-achalasia):
 - Distal esophageal spasm (DES): \geq 20% premature swallows (DL < 4.5 s) with DCl > 450, normal IRP.
 - Hypercontractile (jackhammer): ≥20% swallows with DCI > 8000, normal IRP; exclude obstruction/GERD. PMC

Never skip malignancy screen. New/rapid dysphagia with weight loss or age $>55 \rightarrow EGD$ (\pm CT/EUS) to exclude pseudoachalasia. PMC+1

B) Choosing therapy in achalasia — evidence-anchored, subtype-aware

Head-to-head trials & long-term data

- POEM vs Pneumatic dilation (PD): In treatment-naïve patients, POEM outperformed PD at 2 years;
 5-year follow-up shows sustained higher success for POEM, with more objective reflux. JAMA
 Network+1
- POEM vs LHM (+ Dor): POEM noninferior to LHM for symptom control at 2 years, but reflux esophagitis is more frequent after POEM. New England Journal of Medicine
- PD vs LHM: European Achalasia Trial—similar efficacy at 5 and 10 years overall (with redilation in a subset); type-specific signals: type II favors PD, type III leans to LHM (trend). PubMed+1

• Post-POEM reflux reality check: symptomatic GERD ~10–40%, esophagitis ~15–60%, positive pH studies ~40–60% across series—counsel and plan for acid suppression/testing. PMC+1

Subtype-guided first choices (and why)

- Type I & II: PD, LHM(+partial fundoplication), or POEM are all effective; pick based on center
 expertise, patient preference, anatomy, and comorbids. PMC
- Type III (spastic achalasia): POEM preferred because a long tailored myotomy can be delivered endoscopically. www.asge.org+1
- Frailty/unfit for definitive therapy: Botulinum toxin is appropriate first-line palliation; expect transient benefit. PMC

C) Delivering each therapy well (pearls that change outcomes)

Pneumatic dilation (PD)

Use a graded Rigiflex® protocol: 30 mm → 35 mm → 40 mm as needed, under fluoroscopy.
 Perforation risk is real but acceptable in experienced hands (~1–5% across series). Track response with Eckardt and TBE. www.asge.org+2PMC+2

Laparoscopic Heller myotomy (LHM)

 Pair with a partial fundoplication (Dor or Toupet) to reduce postoperative reflux without increasing dysphagia; both are reasonable. <u>Cochrane Library+1</u>

POEM (Per-oral Endoscopic Myotomy)

Tailor myotomy length: shorter for type I/II; long proximal myotomy for type
III/DES/hypercontractile. Expect higher reflux risk than LHM+fundoplication; plan PPI and consider
objective testing in follow-up. Use FLIP intra-op when available to ensure adequate EGJ opening
(EGJ-DI commonly targeted >~2.8–3.0 mm²/mmHg). www.asge.org+1

D) Follow-up & defining success

- Clinical success: Eckardt ≤3 without retreatment, plus objective improvement (TBE emptying, HRM IRP, or FLIP DI). PMC
- Reflux after POEM: discuss upfront; if symptoms or high-risk phenotype, consider pH(-impedance)
 testing and long-term PPI; anti-reflux surgery/endoscopic options are case-by-case. www.asge.org+1
- Recurrence/failure pathway: confirm physiology (HRM + TBE and/or FLIP). Options include repeat
 PD, redo myotomy (POEM ← LHM), or addressing post-fundoplication obstruction if present.
 www.asge.org

E) Spastic esophageal disorders (DES, hypercontractile) — calm the chaos

Step 1: Remove the accelerants.

- Opioids are notorious for inducing or exaggerating spastic patterns (DES/HE) and impairing
 deglutitive inhibition; taper if possible and retest. Gastrojournal+2PubMed+2
- Treat coexisting GERD first (PPI trial per AGA best practice) and re-evaluate. Gi Board Review

Step 2: Meds (useful but imperfect):

- Smooth-muscle relaxants (e.g., calcium-channel blockers, nitrates, PDE-5 inhibitors) can blunt
 contraction vigor or premature contractions; benefits are often modest and short-lived. Peppermint
 oil is well-tolerated and can acutely reduce simultaneous contractions. MMC+2PubMed+2
- For noncardiac chest pain overlap, consider neuromodulators (TCA/SSRI/SNRI) as per DGBI practice updates. CGH Journal

Step 3: Interventions for refractory dysphagia-predominant disease:

- POEM (tailored/long myotomy) offers high technical success and good dysphagia relief in type
 III/DES/HE, but chest-pain response is less predictable and reflux risk remains; evidence is largely
 observational with meta-analytic support. PubMed+2PubMed+2
- Botulinum toxin for non-achalasia spastic disorders is not recommended routinely (inconsistent benefit); reserve for select patients. <u>Esge</u>

F) Cancer risk in achalasia — caution without paranoia

Achalasia carries a higher risk of esophageal cancer (mostly SCC); pooled incidence around ~1–3 per 1,000 person-years in cohorts/meta-analyses. Routine surveillance isn't universally recommended by US societies, but many clinicians individualize after >10–15 years or in megaesophagus. Keep suspicion high for new or changing symptoms. PMC+2PMC+2

G) Numbers & thresholds to remember (stick these to your brain)

- DES: ≥20% premature swallows (DL <4.5 s) + DCl > 450; Hypercontractile: ≥20% with DCl > 8000 (normal IRP). PMC
- PD: graded 30 → 35 → 40 mm; perforation risk roughly 1–5% across series; reassess with TBE/Eckardt in 4–6 weeks. www.asge.org+1
- LHM: add partial fundoplication to curb reflux. Cochrane Library
- DOEM: excellent durnhagia relief: more reflux than I HML-fundantication: councel and tect

- accordingly. New England Journal of Medicine+1
- Success bar: Eckardt ≤3. PMC

H) Pitfalls & board-style traps

- Treating type III with short myotomies or PD only → under-treatment. POEM with long myotomy is the favored play. www.asge.org
- Calling spasm primary while the patient is on opioids or has untreated GERD. Remove confounders first, then re-measure. Gastrojournal+1
- Declaring victory on symptoms alone: always pair Eckardt with an objective (TBE/FLIP/HRM). PMC

I) 10-minute drills (mini-cases)

- 1. Subacute dysphagia, HRM: type II achalasia.
 - Options offered: **PD, LHM+partial wrap, or POEM**. Patient prefers non-surgical: **graded PD** with follow-up TBE. If recurrence, consider **escalation** (35→40 mm) or **POEM**. <u>www.asge.org+1</u>
- Debilitating chest pain + intermittent dysphagia; HRM: hypercontractile; chronic oxycodone.
 Opioid taper → reassess. Start PPI if reflux symptoms; trial CCB/nitrate or peppermint oil. POEM only if refractory dysphagia and physiology persists. Gastrojournal+2PMC+2
- 3. Type III achalasia with severe spasm.
 - **POEM with long myotomy**, intra-op **FLIP** to ensure **EGJ-DI** ~≥**3**; anticipate **reflux**—plan PPI and, if symptoms persist, pH-impedance testing. <u>www.asge.org+2PMC+2</u>
- 4. Post-POEM heartburn, Eckardt 1, esophagitis on EGD.
 - **Long-term PPI**, lifestyle tweaks; consider **pH testing** if persistent. Anti-reflux surgery/endoscopy only after objective correlation. www.asge.org

One-page takeaway

- Match therapy to subtype & evidence. Types I/II: PD, LHM(+wrap), or POEM all legit; III: POEM preferred for long myotomy. PMC+1
- POEM wins vs PD (2–5 y), ties LHM for dysphagia, but brings more reflux—counsel, test, and treat.
 PMC+3JAMA Network+3PubMed+3
- Spastic disorders: detox the context (opioids/GERD), try meds (low expectations), and use POEM selectively for refractory dysphagia. Chest pain responses vary. Gastrojournal+2PMC+2
- Measure success (Eckardt ≤3 + objective physiology) and plan structured follow-up to catch reflux and recurrence early. PMC

Next — Module 30: Reflux after the gate opens

Lyon 2.0 update; ambulatory pH-impedance (on/off PPI); reflux phenotypes (NERD, hypersensitive, functional heartburn); managing **post-POEM reflux** without losing your achalasia gains.

You said: Next

ChatGPT said:

Request for GPT-5 Pro

Reasoned for 5m 19s

Module 30 — Reflux phenotyping & post-POEM reflux (measure first, then treat on purpose)

Reflux after we "open the gate" (POEM/LHM/PD) is common—but not all heartburn is acid, and not all acid is the problem you think it is. Use **Lyon 2.0** to sort facts from vibes, then pick targeted therapy.

What you'll master

- Lyon 2.0 thresholds you can run from memory (AET cutoffs, MNBI, when on-therapy impedance matters). <u>PubMed Central</u>
- How to phenotype symptoms into NERD, reflux hypersensitivity, or functional heartburn—and why
 that changes treatment. PubMed Central+1
- A pragmatic approach to post-POEM reflux: expected rates, what to test, how long to treat, and when to consider endoscopic/surgical rescue. PubMed Central+2GIE Journal+2

A) Lyon 2.0 — the new ground rules (short, sharp, usable)

Off PPI (unproven GERD):

- Wireless pH preferred (best yield at 96 h). Diagnostic if AET > 6% on ≥2 days; excludes GERD if AET < 4% on all days with negative symptom association. <u>PubMed Central</u>
- Adjuncts: MNBI (mucosal integrity marker) <1500 Ω supports GERD; >2500 Ω argues against it. Total reflux episodes: <40 supports normal, >80 supports GERD, 40–80 is grey. PubMed Central

On PPI (proven GERD with persistent symptoms):

- pH-impedance on therapy helps separate acid vs non-acid reflux and non-reflux mechanisms. Lyon 2.0 flags AET > 4% + >80 reflux episodes on therapy as evidence for actionable refractory GERD.
 PubMed Central
- ACG/AGA: reserve on-therapy impedance-pH for patients with objective GERD already established
 and persistent symptoms despite optimized therapy. PubMed Central+1
 Reporting tip: Say exactly which study you did (96-h wireless off PPI vs 24-h impedance-pH on PPI),

the AET by day, MNBI values, total reflux episodes, and symptom association. Then end with a one-line classification (conclusive GERD, normal, or inconclusive per Lyon 2.0). PubMed Central

B) Symptom phenotypes (don't treat these the same)

- NERD (non-erosive reflux disease): normal EGD, abnormal reflux monitoring off PPI. Treat as GERD (optimize PPI/PCAB, lifestyle; consider anti-reflux procedure if anatomy supports and objective GERD persists). PubMed Central
- Reflux hypersensitivity: AET <4% but positive symptom association → pain is triggered by
 physiologic reflux. Emphasize neuromodulation/behavioral strategies; procedures help poorly.
 PubMed Central+1
- Functional heartburn: AET normal and no symptom association. Best evidence supports
 neuromodulators and brain-gut behavior therapy; PPIs/procedures aren't the fix. Gastro Journal

C) Post-POEM reflux — what's signal vs noise?

How common?

Ranges depend on *how you measure*: symptomatic reflux ~9–43%, endoscopic esophagitis ~13–68%, and abnormal pH studies ~38–57% after POEM across cohorts and meta-analyses. Rates tend to **decrease over time**. PubMed Central+1

Beware "false positives" from fermentation artifact

Automated analysis can over-call acidification post-POEM; manual review reduced "true acid reflux" to ~ **30%** in one study. Don't escalate therapy to anatomy-changing interventions without **human-verified** tracings. **GIE Journal**

Risk signals

Longer/full-thickness myotomies, higher BMI, alcohol, and no prior wrap correlate with more esophagitis in cohort data. (Mechanism: strong EGJ disruption + absent fundoplication barrier.) Wiley Online Library What to do upfront

- Empiric PPI after POEM is common-sense and endorsed by expert groups; reassess with symptoms and objective testing if persistent. CGH Journal
- If alarm signs or severe symptoms: EGD; otherwise, once symptoms stabilize, use off-therapy wireless pH (unproven GERD) or on-therapy impedance-pH (proven GERD with persistent symptoms) to clarify the mechanism, per ACG/AGA/Lyon. <a href="PubMed Central+2PubMed Central+2Pu

D) Treatment layers (build only as high as the measurement justifies)

1) Foundations (everyone): weight control, avoid late meals, head-of-bed elevation for nocturnal symptoms; correct PPI timing or consider PCAB for tougher acid control. (ACG 2022 supports PPI timing; PCAB can be useful where available.) PubMed Central

- 2) Medical tuning (objective acid reflux present):
 - PPI once-daily

 BID if needed; consider alginate after meals; reserve baclofen for troublesome regurgitation/belching with proven reflux (side-effects limit routine use). PubMed Central+1
- 3) When symptoms persist despite optimized meds—and testing says "still reflux":
 - Confirm there isn't a **hiatal hernia** or **wrap issue** (post-LHM) that needs surgical attention.
 - Endoscopic anti-reflux options after POEM are emerging: small series suggest TIF or ARMS can help carefully selected patients, but evidence is limited; reserve for expert centers after solid physiology. <u>PubMed+2PubMed+2</u>
- 4) When testing says "not reflux" (RH or functional):
 - Step off the PPI escalator. Use **behavioral therapy** (for rumination/supragastric belching) and **neuromodulators** for functional pain. American Gastroenterological Association+1

E) Quick algorithms (clipboard)

1) Post-POEM heartburn/regurgitation

- 1. Start PPI (optimize timing).
- 2. If persistent at 8–12 weeks \rightarrow **EGD** (rule out severe esophagitis).
- Reflux testing:
 - Unproven GERD → 96-h wireless pH off PPI.
 - Proven GERD (LA B−D, prior abnormal study) with symptoms on PPI → 24-h pH-impedance on PPI to classify acid vs non-acid vs non-reflux.
- Treat per phenotype: optimize acid suppression if abnormal; baclofen for refractory regurgitation; behavioral therapy if rumination/SGB; consider TIF/ARMS only with persistent objective reflux and appropriate anatomy. BioMed Central+4PubMed Central+4PubMed Central+4

2) Refractory "reflux" after myotomy—uncertain mechanism

Many complaints are not reflux: check for food stasis, rumination, or supragastric belching. Use
 on-therapy impedance-pH (pattern of events) or HRIM with post-prandial protocol if rumination
 suspected; treat with diaphragmatic breathing/CBT. PubMed Central+2CGH Journal+2

I / INUITING IS LITAL SLICK

- AET off PPI (wireless): >6% on ≥2 days = GERD; <4% all days + negative association = not GERD.
 PubMed Central
- On-therapy actionable refractory GERD: AET >4% + >80 reflux episodes/day on optimized therapy.
 PubMed Central
- MNBI: $<1500 \Omega$ supports, $>2500 \Omega$ argues against GERD. PubMed Central
- Post-POEM reflux ballpark: symptoms ~20%, esophagitis ~27–30%, abnormal AET ~40–50% (varies by method/time). ScienceDirect

G) Pitfalls that burn time (and patients)

- Calling every post-POEM heartburn "pathologic reflux" and escalating without objective testing—remember fermentation artifacts. GIE Journal
- Doing on-therapy impedance in unproven GERD—wrong test, wrong time. Start off-therapy wireless pH. PubMed Central
- Treating reflux hypersensitivity with procedures—benefit is poor; aim for neuromodulation/behavioral approaches. <u>Gastro Journal</u>
- Ignoring rumination/SGB in "refractory regurgitation" after myotomy—these respond to diaphragmatic breathing/CBT, not more acid suppression. <u>American Gastroenterological Association</u>

H) 10-minute drills

- 1. Three months post-POEM, daily heartburn/regurgitation despite PPI qd.
 - Optimize PPI → EGD (look for LA-grade esophagitis). Persistent symptoms → 24-h pH-impedance on PPI (proven GERD). If AET >4% + >80 episodes, escalate (BID PPI/PCAB, consider baclofen for regurgitation). PubMed Central+1
- 2. Six months post-POEM, chest burning and frequent post-prandial "spit-ups"; impedance shows post-prandial common-cavity pressure rises with rapid retrograde flow.
 - Rumination → teach diaphragmatic breathing, consider behavioral therapy; de-escalate acid therapy if testing shows normal AET. <u>CGH Journal</u>
- 3. Erosive esophagitis LA-C on PPI qd after POEM.
 - BID PPI (or PCAB), lifestyle; re-scope to heal. If persistent objective reflux thereafter, and anatomy favorable, discuss TIF/ARMS at an experienced center. PubMed+2
- Recurrent heartburn one year post-POEM, wireless pH normal all days; symptom association negative.
 - Functional heartburn → neuromodulator and brain-gut therapy; avoid procedural "solutions."
 Gastro Journal

One-page takeaway

- Test precisely, then treat. Use Lyon 2.0: off-therapy wireless pH (prefer 96 h) to diagnose/exclude GERD; on-therapy impedance-pH only in proven GERD with persistent symptoms. AET >6% (≥2 days) clinches GERD; MNBI <1500 Ω supports it. PubMed Central
- Post-POEM reflux is common but variable—and sometimes over-called. Confirm with human-reviewed studies before anatomy-changing steps. Start with optimized PPI, escalate per objective physiology, and reserve TIF/ARMS for measured failures in expert hands. GIE Journal+1
- Phenotype the pain: NERD vs reflux hypersensitivity vs functional heartburn—because PPIs, baclofen, neuromodulators, and behavioral therapy each have their lane. <u>PubMed Central+1</u>

Next — Module 31: Esophageal cancer (SCC & EAC) — staging to strategy. We'll stitch together EUS/CT/PET, when EMR/ESD is curative, when to use neoadjuvant chemoradiation vs surgery, current systemic therapies, and post-therapy surveillance.

You said:

Next

ChatGPT said

Request for GPT-5 Pro

Reasoned for 7m 8s

Module 31 — Infectious esophagitis (Candida, HSV, CMV): fast triage, clean diagnosis, right drugs, right durations

Odynophagia in a fragile host is a race against misery (and occasionally disaster). Know when you can treat empirically, when you must scope, and what to biopsy where. Then dose like you mean it.

What you'll master

- A triage & testing algorithm for odynophagia that balances speed with accuracy—when empiric fluconazole is OK and when EGD/biopsy is essential. Infectious Diseases Society of America
- Pattern recognition & biopsy strategy that separates Candida, HSV, and CMV at the scope. PMC
- First-line and salvage regimens with adult dosing, routes, and realistic durations—plus what to do
 when azoles, acyclovir, or ganciclovir fail. Infectious Diseases Society of America+2Clinical Info+2

A) First 10 minutes: triage & the "test-or-treat" fork

1 Red flags = FGD now: bleeding severe pain with systemic toxicity, airway risk, or suspected

- perforation. (Stabilize: scope with biopsies.)
- Typical story (HIV, transplant, chemo, high-dose steroids) + odynophagia ± oral thrush → empiric fluconazole is guideline-supported before endoscopy. If no clinical response in 48–72 h, or if no thrush (raising HSV/CMV suspicion), do EGD with biopsies. Infectious Diseases Society of America
- Always review meds & risks: recent broad-spectrum antibiotics, PPIs, inhaled/oral steroids, poorly
 controlled diabetes, advanced HIV (CD4 <200)—these tilt you toward Candida; profound T-cell
 suppression tilts toward HSV/CMV. Clinical Info

B) Endoscopic patterns & biopsy map (high-yield)

- Candida: adherent white plaques on erythematous mucosa; may coalesce. Biopsy/brush a plaque (culture if refractory/recurrent).
- HSV: small, "punched-out" or volcano-like ulcers with raised rims, often mid-to-distal. Biopsy the
 ulcer edge (viral cytopathic change lives there).
- CMV: large, linear/serpiginous, shallow ulcers, often distal. Biopsy the ulcer base (endothelial cells in the base harbor CMV). Use IHC/PCR as available. PMC
 Mixed infections happen. If the scope screams "Candida" and you see a deep linear ulcer, treat Candida and send HSV/CMV biopsies—don't miss the co-star.

C) Candida esophagitis — simple plan, strong data

When to treat empirically

 Classic odynophagia in an at-risk host (esp. with thrush): start fluconazole, then scope only if poor response or atypia. IDSA explicitly allows a diagnostic trial before EGD. <u>Infectious Diseases Society of America</u>

First-line

• Fluconazole 200–400 mg PO (or IV) once daily for 14–21 days. (Systemic therapy is always required for esophageal disease.) Infectious Diseases Society of America

Unable to take PO / drug interactions / intolerance

Fluconazole 400 mg IV daily, or an echinocandin: micafungin 150 mg IV daily, caspofungin 70 mg LD
 → 50 mg IV daily, or anidulafungin 200 mg IV daily. <u>Infectious Diseases Society of America</u>

Fluconazole-refractory (or fluconazole-resistant species)

Itraconazole solution 200 mg PO daily or voriconazole 200 mg PO/IV BID x 14–21 days. Alternatives: echinocandin as above (14–21 d) or AmB deoxycholate 0.3–0.7 mg/kg IV daily (reserve for failures). Consider posaconazole (susp 400 mg BID or ER 300 mg QD) in tough cases. Infectious Diseases Society of America

Chronic suppression?

 Usually unnecessary; if relentless recurrences while immunosuppressed, some programs use fluconazole 100 mg three times weekly as secondary prophylaxis. Revisit once immunity improves. Infectious Diseases Society of America

D) HSV esophagitis — short ulcers, sharp pain, quick relief

Who & how it looks

Immunocompromised >> immunocompetent; abrupt odynophagia, chest pain, sometimes fever.
 Endoscopy as above; confirm with edge biopsies/viral studies if uncertain. PMC

Treatment (adults)

Acyclovir PO 400–800 mg five times daily for 7–10 days (immunocompetent) or up to 14–21 days if immunocompromised/severe. Valacyclovir 1 g PO BID or famciclovir 500 mg PO BID–TID are acceptable oral alternatives. Severe odynophagia or inability to swallow: acyclovir 5–10 mg/kg IV q8h, then step down to oral on improvement. Foscarnet for acyclovir-resistant HSV. Hopkins Guides+2PMC+2

E) CMV esophagitis — big ulcers, bigger stakes

Who & how it looks

Advanced T-cell immunodeficiency (e.g., HIV with CD4 <50), SOT/HSCT, high-dose steroids.
 Endoscopy: large linear/serpiginous ulcers; biopsy base. PMC

Treatment (adults)

- Induction: Ganciclovir 5 mg/kg IV q12h (renal-adjusted) for 14–21 days.
- Step-down when clinically improved & able to swallow: Valganciclovir 900 mg PO BID to complete
 2–3 weeks total therapy. Watch for neutropenia; coordinate with ID for growth-factor support and drug-interaction management. Foscarnet is the go-to for ganciclovir-resistant disease. Clinical Info+1

F) Practical algorithms (clipboard-ready)

Odynophagia in an at-risk host

- Oral thrush present? → Fluconazole 200–400 mg daily, 14–21 d now.
- No improvement in 48–72 h or no thrush / atypical pain → EGD with biopsies (Candida plaque + HSV edge, CMV base).
- 3. Scope says HSV → acyclovir PO (or IV if severe); scope says CMV → ganciclovir IV then valganciclovir PO

vaiganiciciovii ro.

 Reassess adherence, drug interactions, and immune status; de-escalate once healed. <u>Infectious</u> <u>Diseases Society of America+2PMC+2</u>

Refractory Candida (still symptomatic on day 4-5)

Confirm ingestion & acid suppression; check species/susceptibility if available; switch to itraconazole solution or voriconazole—or echinocandin if drug interactions abound—for 14–21 d. Infectious Diseases Society of America

G) Numbers & gotchas worth memorizing

- Empiric fluconazole before EGD in classic cases is explicitly supported by IDSA. Scope early if atypical or no response in 48–72 h. Infectious Diseases Society of America
- Candida: fluconazole 200–400 mg QD x 14–21 d; IV or echinocandin if PO not possible. Refractory → itraconazole/voriconazole (or echinocandin). Infectious Diseases Society of America
- HSV: acyclovir PO 400–800 mg five times daily 7–10 d (longer if immunocompromised) or valacyclovir 1 g BID; IV acyclovir if severe. Foscarnet for resistance. <u>Hopkins Guides+1</u>
- CMV: ganciclovir 5 mg/kg IV q12h, then valganciclovir 900 mg BID to finish 2-3 weeks; monitor counts/renal function. Clinical Info+1
- Biopsy rule: HSV = edge, CMV = base—write it in the op note. PMC

H) Pitfalls (how good clinicians get burned)

- Treating **all** odynophagia as Candida: you'll miss **CMV/HSV** (especially with deep linear ulcers or no thrush). Biopsy smartly. PMC
- Stopping azoles early: Candida needs 14–21 days; shorter courses relapse. <u>Infectious Diseases</u>
 <u>Society of America</u>
- Forgetting drug interactions/toxicities: voriconazole (QT, CYP mayhem); ganciclovir (neutropenia); foscarnet (nephrotoxicity, electrolytes). Use ID/Pharm allies. Clinical Info
- Biopsying the wrong spot: CMV at the edge, HSV at the base → false negatives. Swap that: HSV edge, CMV base. PMC

I) 10-minute drills (mini-cases)

- 1. HIV (CD4 42), odynophagia, no thrush.
 - EGD: large linear distal ulcers → base biopsies confirm CMV. Start ganciclovir 5 mg/kg IV q12h, step down to valganciclovir 900 mg BID when improved to complete 2–3 weeks. Clinical Info+1
- Kidney-transplant patient on tacrolimus; severe odynophagia with scattered "volcano" ulcers.

 HSV on edge biopsies → acyclovir 5–10 mg/kg IV q8h (renal-adjust), then valacyclovir 1 g BID to finish 10–14 days. Monitor tacrolimus/renal function. Hopkins Guides
- 3. Chemo patient with thrush and burning chest pain.
 - Start fluconazole 400 mg PO daily; if no improvement by day 3, EGD to exclude HSV/CMV; if plaques persist and culture shows C. glabrata, switch to micafungin 150 mg IV daily. <u>Infectious Diseases Society of America</u>
- 4. Recurrent Candida despite multiple short courses.
 - Treat 14–21 days with fluconazole (or itraconazole solution if interactions); consider fluconazole
 100 mg TIW secondary prophylaxis while immune reconstitution is pending. Infectious Diseases
 Society of America

One-page takeaway

- Treat-or-test: Empiric fluconazole is fine in classic cases; scope fast if atypical or not improving by 48–72 h. Infectious Diseases Society of America
- Biopsy where the virus lives: HSV at the edge, CMV at the base; Candida off the plaque. PMC
- Dose like a pro: Candida = fluconazole 200–400 mg QD x 14–21 d; HSV = acyclovir/valacyclovir (oral or IV if severe); CMV = ganciclovir IV → valganciclovir PO for 2–3 weeks with labs watched closely. Infectious Diseases Society of America+2Hopkins Guides+2

Next — Module 32: Esophageal varices & portal-hypertensive lesions

Screening, primary/secondary prophylaxis, banding technique & pitfalls, salvage strategies (Danis stent, early TIPS), and documentation that keeps you (and your patients) out of danger.

You said:

Next

ChatGPT said:

Request for GPT-5 Pro

Reasoned for 9m 12s

Module 32 — Esophageal varices & portal-hypertensive lesions: stabilize, stop, shunt, and safeguard Variceal hemorrhage is portal-pressure physics meeting fragile mucosa. Win the first 6 weeks, and you've won the war. Here's the crisp, guideline-current playbook you can run on autopilot at 3 a.m.

What you'll master

 Exactly what to do in the first hour (restrictive transfusion, early antibiotics, vasoactive infusion, airway without autopilot) and when the scope should happen. PMC+3socgastro.org.br+3Connected

Culture Expo+3

- Definitive hemostasis (EVL first; when salvage is SEMS vs balloon; when pre-emptive TIPS changes outcomes). New England Journal of Medicine+3Connected Culture Expo+3PubMed+3
- After the bleed: secondary prophylaxis (NSBB + EVL), and a 2024-2025 view on carvedilol and noninvasive Baveno VII triage. PMC+3PMC+3PMC+3

A) First hour: the "no-regrets" bundle

- 1. Resuscitate, but don't over-transfuse.
 - Restrictive PRBC strategy: transfuse at Hgb < 7 g/dL (reasonable 8 g/dL if significant CAD). Aim
 7–9 g/dL afterwards. socgastro.org.br+1
 - Avoid routine correction to INR/platelet "targets"; FFP can harm and there's no evidence of benefit in AVH. Connected Culture Expo

2. Antibiotics now.

- Ceftriaxone 1 g IV daily for up to 7 days (tailor to local resistance/allergy). Reduces infections, rebleeding, and mortality. Abbreviated courses may suffice once bleeding controlled and vasoactives stopped. Essge+1
- 3. Start vasoactive therapy before endoscopy.
 - Octreotide: 50 mcg IV bolus, then 25-50 mcg/h infusion for 2-5 days. Medscape Reference+1
 - Terlipressin (where used for AVH): 2 mg IV q4h × 48 h, then 1 mg q4h to day 3–5. (US label is HRS-AKI, but AVH use is guideline-concordant internationally.) MDPI
- 4. Airway with judgment (not ritual).
 - Avoid routine prophylactic intubation—it increases pneumonia and may worsen outcomes; intubate for active massive hematemesis, encephalopathy, or inability to protect airway. PMC+2PMC+2
- 5. Prokinetic before scope.
 - Erythromycin 250 mg IV 30–120 min pre-EGD improves visualization and reduces repeat endoscopy. Esge

B) Endoscopic hemostasis & timing

- Timing: Perform upper endoscopy as soon as feasible and ideally within 12 hours after presentation, once resuscitation and antibiotics/vasoactives are in. Connected Culture Expo+1
- Technique (esophageal varices): Endoscopic variceal ligation (EVL) is first-line; sclerotherapy is second-line when EVL isn't possible. Connected Culture Expo
- Gastric varices (quick note): EVL is often inadequate; think cyanoacrylate (if available) or radiologic
 options per dedicated GV guidance. giboardreview.com

If bleeding persists or recurs during the index admission (salvage):

- Use a fully covered esophageal SEMS (e.g., SX-ELLA Danis) rather than balloon tamponade when available—better bleeding control and fewer serious adverse events in RCTs and reviews. Wiley Online Library+1
- If SEMS is unavailable or placement fails, balloon tamponade (Minnesota/Sengstaken-Blakemore) is a bridge for ≤24 h on an ICU ventilator pathway. PMC

C) Who gets pre-emptive (early) TIPS?

Place within 72 h (often within 24–48 h) after endoscopic control in high-risk patients: Child-Pugh C 10–13 or Child-Pugh B (8–9) with active bleeding at endoscopy. This strategy improves 6-week survival and reduces failure/rebleeding vs. standard therapy. Avoid in CP C ≥14 or when contraindications to TIPS exist. New England Journal of Medicine+1
Radiology partner moves: If proceeding to TIPS, modern guidance supports selective variceal embolization at TIPS when there is persistent variceal filling or suboptimal portal gradient reduction. Coordinate with IR up front. Lippincott Journals

D) Meds around the scope (clearing the fog)

- Vasoactives: Continue 2–5 days post-EGD to prevent early rebleeding; emerging data suggest abbreviated courses (≈2–3 days) can be noninferior once hemostasis is secure. PMC+1
- PPIs: Not for portal hypertension per se. A short course may shrink post-banding ulcers and may reduce early rebleeding in some studies; evidence is mixed and long-term PPIs carry harm in cirrhosis—use briefly and thoughtfully. Karger Publishers+1

E) Secondary prophylaxis (after discharge, prevent the sequel)

- Everyone (no contraindications): NSBB + EVL until variceal eradication, then NSBB long term. This
 combo reduces rebleeding better than either alone. PMC
- NSBB choice, 2024–2025 reality: Carvedilol has become the preferred NSBB in many practices more portal-pressure reduction and signals for better outcomes vs propranolol/nadolol; start low and titrate to max tolerated while watching BP. <u>PMC+1</u>
- Refractory/recurrent bleeding (despite optimized EVL + NSBB): discuss definitive TIPS (and consider concomitant embolization if indicated). <u>Lippincott Journals</u>

F) Primary prophylaxis (before the first bleed)

- With high-risk varices on screening: NSBB (prefer carvedilol) OR EVL—guidance favors NSBBs for broader benefits (preventing decompensation), reserving EVL when NSBBs aren't tolerated.
 American College of Gastroenterology+1
- Baveno VII noninvasive triage (spare endoscopies and start the right drug):
 - CSPH ruled out if LSM ≤ 15 kPa and platelets ≥ 150 K/μL → very low risk of high-risk varices, defer screening and monitor annually.
 - Endoscopy indicated if LSM ≥ 20 kPa or platelets ≤ 150 K/μL (when you're not starting NSBBs).
 PMC

G) Downhill varices (because not all varices are portal)

Upper-third varices from SVC obstruction (catheters, mediastinal masses, thyroid disease) are not
portal hypertension. Treat the SVC lesion (stent/oncology) and avoid routine NSBBs; band only if
bleeding/high-risk stigmata. PMC+1

H) Clipboard algorithms (ready to paste into orders)

Suspected AVH in ED/ICU

- 1. 2 large-bore IVs \rightarrow Restrictive PRBCs to 7–9 g/dL; avoid corrective FFP/platelet targets.
- 2. Ceftriaxone 1 g IV daily (up to 7 d).
- 3. Octreotide 50 mcg IV → 25–50 mcg/h infusion.
- 4. Erythromycin 250 mg IV 30-120 min pre-EGD.
- 5. EGD within ~12 h: EVL as primary therapy.
- 6. If uncontrolled: SEMS (preferred) or balloon tamponade as a bridge; call IR early for early TIPS if high-risk (CP C 10–13 or CP B with active bleed). New England Journal of Medicine+ 4socgastro.org.br+4Connected Culture Expo+4

After hemostasis (inpatient → discharge)

- Continue vasoactive 2–5 d; stop antibiotics when bleeding controlled (≤7 d total).
- Start NSBB (carvedilol preferred) unless contraindicated; schedule EVL q2-4 weeks to eradication.
- Plan TIPS if failure/recurrent bleeding despite NSBB + EVL. PMC+1

I) Pitfalls that hurt patients (and your outcomes)

- Over-transfusing to "normalize labs": increases portal pressure and rebleeding; stick to restrictive transfusion and no routine FFP/platelet targets. socgastro.org.br+1
- Delaying antibiotics/vasoactives until after EGD—start immediately when AVH suspected. Esge+1
- Reflex intubation for everyone—raises pneumonia risk; intubate only for clear indications. PMC
- Skipping early-TIPS in the truly high-risk—missed survival benefit. New England Journal of Medicine
- Lifelong PPIs after banding—keep courses short if you use them; reassess early. PMC

J) 10-minute drills (mini-cases)

- 1. CP-B9, active bleeding at EGD controlled with EVL.
 - Continue octreotide/ceftriaxone, ICU observe; flag for pre-emptive TIPS within 72 h. If IR delayed and rebleed risk high, place SEMS as a bridge. New England Journal of Medicine+1
- 2. Massive hematemesis, encephalopathy, shock.
 - Selective intubation for airway, octreotide + ceftriaxone, urgent EGD. If visualization impossible, balloon tamponade temporarily, then TIPS once stabilized. PMC
- 3. Second bleed 3 weeks post-discharge, on propranolol 20 mg BID, missed EVL follow-up.
 - Titrate NSBB (consider switch to carvedilol), accelerate EVL to eradication, assess TIPS candidacy if rebleeding persists. PMC
- 4. Upper-third varices in a dialysis patient with facial edema.
 - Think **downhill**: order **CT venography**; consult **IR** for **SVC stenting**. Don't start NSBB "for varices." Band **only if bleeding**. PMC+1

One-page takeaway

- Bundle early: Restrictive transfusion, ceftriaxone, vasoactive infusion, EGD within ~12 h. EVL to
 control, SEMS or balloon as a bridge, and pre-emptive TIPS for CP-C10-13 or CP-B with active
 bleeding. New England Journal of Medicine+3socgastro.org.br+3Connected Culture Expo+3
- Secondary prevention: NSBB (carvedilol preferred) + EVL; escalate to TIPS if failures. Primary
 prevention increasingly NSBB-first with Baveno VII noninvasive triage to spare scopes. PMC+
 2PubMed+2

Next — Module 33: Post-esophagectomy life (leaks, conduit ischemia, strictures, reflux, nutrition).

A surgical saga from day 0 in the ICU to year 2 in clinic: early detection pathways, endoscopic and IR fixes for leaks, how to keep the conduit open, and how to keep patients fed without wrecking their lungs.

You said:

Next

ChatGPT said:

Reminest for GDT-5 Dro

Reasoned for 7m 37s

Module 33 — Life after esophagectomy: leaks, conduit failure, emptying, strictures, reflux, and nutrition Surgery rewires physics. After an esophagectomy, the rules of pressure, perfusion, and peristalsis all change—so our playbook must too. Here's a gastroenterologist-level, ICU-at-3 a.m. friendly guide.

What you'll master

- Diagnosing leaks early and correctly (stop relying on day-5 contrast swallows). ScienceDirect+1
- Choosing your closure tool (EVT vs stent vs surgery), including how to actually run an EVT program
 (exchange cadence, enteral feeding, when to combine or switch). PubMed Central+2PubMed
 Central+2
- Conduit ischemia/necrosis triage using ECCG definitions that map to actions. Lippincott Journals+1
- Pyloric dysfunction & delayed gastric conduit emptying (DGCE)—what helps (balloon dilation, G-POEM) and what probably doesn't (routine intra-op botox). <u>PubMed Central+2PubMed Central+2</u>
- Anastomotic strictures—durable dilation strategies and when to add steroids, incision therapy, or a temporary stent. Practical Gastro+1
- Chyle leaks—lab thresholds, when to try diet/octreotide, and when to call IR for thoracic-duct embolization. NCBI+1
- Reflux, aspiration, dumping & micronutrients—what actually helps in the long haul. MDPI+ 3Digestive Medicine Research+3PubMed+3

A) First 72 hours: leak vigilance without the superstition

Default diagnostic pathway when you suspect trouble (tachycardia, fever, chest/neck pain, rising CRP, new oxygen needs):

- CT chest/upper abdomen with oral water-soluble contrast (and IV contrast unless contraindicated).
 It outperforms routine contrast swallows for detecting post-esophagectomy anastomotic leaks.

 Routine day-5 swallows have poor sensitivity and add little to management. ScienceDirect+1
- 2. Early endoscopy is safe in experienced hands and gives you the truth: leak size, cavity, conduit perfusion. Some centers perform early endoscopy (≤72 h) to stratify risk and pre-empt complications. PubMed+1

ECCG definitions = common language with the surgeons

- Anastomotic leak (AL): full-thickness defect at anastomosis/staple line/conduit, any presentation.
- AL Type I/II/III = managed medically / endoscopically-interventionally / surgically.
- Conduit necrosis (CN) Type I/II/III = focal-medical / focal-surgical (no diversion) / extensive—diversion. These maps help everyone align on next steps. <u>Lippincott Journals+1</u>

B) Closing leaks: when to use EVT, stents, or a knife

Stabilize first: NPO, broad-spectrum antibiotics, drain collections (percutaneous if needed), secure enteral access beyond the leak (nasojejunal or J-tube). Then choose your closure strategy.

1) Endoscopic vacuum therapy (EVT)

- When: Most contained intrathoracic or cervical ALs with a cavity; also useful for larger defects, septic
 patients once source control achieved.
- Why: Across multiple reviews/meta-analyses, EVT achieves higher leak-closure and lower mortality/complications than SEMS (though RCT data remain limited). PubMed Central+1
- How: Place sponge intracavitary or intraluminal, continuous suction, and exchange every 48–72 h
 until granulation closes the defect; feed enterally during therapy. <u>PubMed Central</u>
- Hybrids: Consider VacStent (stent + suction) or sequential EVT→stent for epithelialization after cavity collapse—particularly in long-standing leaks or to shorten therapy. <u>BioMed Central</u>

2) Self-expanding metal stent (SEMS)

- When: Short linear defects without large cavities; when EVT logistics are unavailable.
- Caveats: Higher migration and buried-stent risk; often needs concomitant drainage if a cavity exists.
 Comparative data generally favor EVT on closure and adverse events. PubMed Central

3) Surgery

 When: Hemodynamic instability, diffuse mediastinitis despite endoscopic therapy, extensive conduit necrosis (CN Type III) → take-down/diversion. e-Repositori UPF

Micro-algorithm (intrathoracic AL):

Stable + cavity present \rightarrow **EVT** ± percutaneous drain.

Stable + small linear defect/no cavity \rightarrow **SEMS** (or VacStent).

Unstable or CN Type III \rightarrow **OR** (washout, revision/diversion). PubMed Central+1

C) Conduit ischemia/necrosis (CN): don't miss the perfusion problem

- Suspect CN when you see dusky mucosa at early endoscopy, rising vasopressor needs, or persistent sepsis despite treated AL.
- Classify & act (ECCG): Type I (focal, endoscopic diagnosis) often non-operative + EVAC/observation;
 Type II needs surgical intervention without diversion;
 Type III = conduit resection/diversion.
 Early identification improves survival.
 e-Repositori UPF
- Pro-tin: Come teams use early nectonerative endoscony explicitly to grade ischemia risk and

intervene before full-blown leak. Evidence suggests safety and fewer leaks/shorter LOS with this approach. PubMed

D) Delayed gastric conduit emptying (DGCE): fix the pylorus, spare the lungs

Presentation: early satiety, regurgitation of undigested food, vomiting, aspiration, retained food at EGD. **First-line:** small, frequent, low-fat/low-fiber meals; prokinetics (metoclopramide short course). Escalate endoscopically if inadequate. **SpringerLink**

Endoscopic options (evidence-based triage):

- Balloon dilation (20–30 mm; sometimes repeated) is safe and effective post-esophagectomy. Some series show 30 mm reduces re-dilatation vs 20 mm. PubMed Central+1
- Intra-pyloric botulinum toxin (BTX-A): routine intra-op prophylaxis has not shown consistent benefit; meta-analyses question its value. Consider as an adjunct with dilation in selected refractory cases rather than a default. Annals of Esophagus
- G-POEM (gastric per-oral pyloromyotomy): outcomes similar to pyloroplasty for symptom relief in gastroparesis-type physiology and increasingly used in post-esophagectomy DGCE when dilation fails. <u>PubMed Central+1</u>

E) Anastomotic strictures: durable relief without perforation

- Incidence: ~10–40% depending on anastomosis level and ischemia—most within 3 months. (Range across modern series.)
- First-line: Bougie or balloon dilation to a target 15–18 mm over several sessions. Adjunctive intralesional triamcinolone can reduce recurrence in inflammatory strictures. Practical Gastro
- When tough: Endoscopic incisional therapy (radial stricturotomy) improves patency in refractory
 anastomotic rings; meta-analyses suggest lower recurrence vs dilation alone. Temporary fully
 covered stents or LAMS can bridge select refractory cases. PubMed
- Old dogma check: Strict adherence to the "rule of three" is not supported by contemporary data; careful, individualized upsizing beyond 3 mm/session has not increased perforations in benign disease. (Judgment still required.) PubMed

F) Chyle leak (post-esophagectomy chylothorax): diagnose fast, escalate wisely

- Diagnosis: pleural fluid triglycerides >110 mg/dL or chylomicrons confirms chylothorax. NCBI
- Initial management: Dietary fat restriction with MCT-based feeds or NPO + TPN, octreotide often tried (low risk), and aggressive drainage. Escalate early for high-output leaks. <u>Journal of Thoracic</u> <u>Disease</u>
- When to call IR/surgeons: persistent or high-output leaks (~>1 L/day) → thoracic-duct embolization
 (TDE) or surgical ligation. Meta-analyses show TDE clinical success ~80–90% in many series with
 lower morbidity than re-operation. PubMed Central
- Esophagectomy-specific reviews confirm variable incidence (≈0.4–9%) and support tiered escalation. BioMed Central+1

G) Reflux, aspiration & airway: living with a chest-stomach

- Reflux after esophagectomy is common and multifactorial (loss of LES, intrathoracic conduit, vagotomy). PPIs treat acid but not bile—so pair them with positional therapy (wedge, bed-head elevation ~20 cm) and timing (no late meals). Randomized/controlled data support head-of-bed elevation for nocturnal symptoms in post-esophagectomy patients. Digestive Medicine Research+1
- Bile-predominant symptoms: consider alginates/sucralfate and a trial of ursodeoxycholic acid or prokinetics; high-quality RCTs are limited. <u>Lippincott Journals</u>
- Dumping syndrome: start with dietary patterning (small, lower-simple-carb meals; add fiber/viscosity). Acarbose helps late dumping; somatostatin analogs for refractory cases. Nature+1
- Recurrent laryngeal nerve palsy (RLNP): more frequent with McKeown than transhiatal approaches
 and increases aspiration risk. Early ENT referral and injection laryngoplasty (temporary
 medialization) meaningfully improves voice and reduces aspiration while nerves recover. <u>Journal of</u>
 Thoracic Disease+1

H) Long-term nutrition: prevent the slow fade

- Micronutrients are frequently low after esophagectomy with gastric conduit—B12 deficiency ~18% in some cohorts; iron, vitamin D and zinc also common. Plan annual labs (CBC, ferritin, B12 ± holo-TC/MMA, vitamin D, zinc) and supplement preemptively if borderline. PubMed+1
- Feeding strategy: ERAS frameworks increasingly support early oral feeding as tolerated, but many
 programs still use jejunostomy as a safety net in high-risk patients; route should be individualized.
 SpringerLink

I) Pitfalls that reliably hurt patients (and how to dodge them)

- Ritual day-5 contrast swallow—low sensitivity, false reassurance. Use on-demand CT ± early EGD. ScienceDirect
- Stent overuse for big, cavitary leaks—higher migration, poorer closure vs EVT; pick EVT when a cavity rules. PubMed Central
- "Botox for everyone" pylorus policy—evidence doesn't support routine prophylaxis; use dilation first, reserve BTX/G-POEM for select cases. Annals of Esophagus
- Ignoring micronutrients—B12, iron, D, zinc will quietly erode recovery. Screen and supplement.

J) 10-minute drills (mini-cases)

- 1. POD 7, fever 38.8 °C, chest pain, leukocytosis. Contrast swallow "negative."
 - → CT with oral contrast shows small cavity at the anastomosis. Place percutaneous drain, start EVT with 48-72 h exchanges, feed via NJ. Consider VacStent if cavity collapses but a slit persists. ScienceDirect+1
- 2. Regurgitation of solids, retained food on EGD, no leak.
 - → Pyloric balloon dilation to 20–30 mm; repeat if needed. Reserve BTX as adjunct; refractory → G-POEM. PubMed Central+2Journal of Thoracic Disease+2
- 3. Milky chest-tube output POD 3, triglycerides 260 mg/dL.
 - → MCT diet/NPO + octreotide, maintain drainage. If >1 L/day or persistent: thoracic-duct embolization; surgery if IR fails. NCBI+1
- 4. Hoarseness, coughing with sips post-McKeown.
 - ightarrow ENT eval; early injection laryngoplasty + swallow therapy, head-of-bed elevation; reassess at 3-6 months. Journal of Thoracic Disease+1
- 5. Recurrent dysphagia 6 weeks post-op (cervical anastomosis).
 - → Serial dilations to 16–18 mm; if recurrent, add steroid injection or incisional therapy before considering a temporary stent. Practical Gastro+1

One-page takeaway

- Diagnose leaks with CT and early EGD, not ritual swallows. Use EVT (48-72 h exchanges) for cavitary ALs; SEMS for small, non-cavitary defects; operate for conduit necrosis. ScienceDirect+ 2PubMed Central+2
- DGCE: start conservative; balloon dilation is mainstay; routine intra-op BTX lacks solid benefit; G-POEM for refractory. Annals of Esophagus+1
- Chyle leak: TG >110 mg/dL = chyle; escalate early to TDE if high-output/persistent. NCBI+1
- Long-term: plan for reflux mitigation, aspiration prevention, and micronutrient monitoring—they matter as much as the leak you closed. PubMed+1

Next — Module 34: Caustic injuries & corrosives

From triage to late strictures: endoscopic timing, Zargar, steroids/stents, and reconstruction strategy. You said:

Next

ChatGPT said:

Request for GPT-5 Pro

Reasoned for 5m 46s

Module 34 — Esophageal diverticula & UES dysfunction (Zenker, Killian-Jamieson, mid-thoracic traction, epiphrenic): map the pouch, fix the physics

Diverticula are side-pockets made by bad biomechanics: outflow resistance above (Zenker/KJ), disordered peristalsis below (epiphrenic), or old inflammatory tethers (mid-thoracic traction). Treat the cause, not just the pocket.

What you'll master

- Pattern recognition & imaging that separate Zenker from Killian-Jamieson (KJ), mid-thoracic traction, and epiphrenic diverticula—and when to add HRM/FLIP. Journal of Thoracic Disease+1
- Therapy selection across approaches: rigid stapling, flexible septotomy, Z-POEM/D-POEM, and surgery—with real-world pros/cons and recurrence signals. PubMed Central+2PubMed Central+2
- A motility-first plan for epiphrenic disease (myotomy ± diverticulectomy vs endoscopic alternatives), and RLN-safe thinking for KJ lesions. PubMed Central+2PubMed Central+2

A) Anatomy & types (one slide)

- Zenker's diverticulum (ZD): posterior pulsion herniation through Killian's dehiscence above the cricopharyngeus (CP). Present with oropharyngeal dysphagia, regurgitation, halitosis, aspiration. Barium esophagram = test of choice; EGD is adjunct (gently—false lumen risk). MDPI
- Killian-Jamieson diverticulum (KJD): anterolateral pouch just below the CP at the Killian-Jamieson space—close to the recurrent laryngeal nerve (RLN). Similar symptoms but different surgical neighborhood, PubMed Central
- Mid-thoracic (traction) diverticulum: true diverticulum from prior mediastinal inflammation (TB, histoplasmosis); often incidental. Treat only if symptomatic/complicated. Journal of Thoracic Dicasca+1

PISCUSCIA

 Epiphrenic diverticulum (ED): distal esophagus, usually pulsion from a motility disorder (achalasia-spectrum). Symptoms: dysphagia, regurgitation, aspiration. Needs HRM ± FLIP to phenotype. <u>PubMed Central+1</u>

B) Diagnostic work-up (don't skip physics)

- Barium esophagram (lateral neck for ZD/KJD; full esophagus for mid/epiphrenic). Map size, neck, and relation to UES/LES. Journal of Thoracic Disease
- EGD to exclude mucosal disease and to plan therapy; use cap and gentle entry to avoid diverticular intubation.
- HRM (CCv4.0) ± FLIP when epiphrenic or motility symptoms are present; ED almost always has an
 underlying disorder, and therapy hinges on it. FLIP can guide septotomy/myotomy adequacy during
 D-POEM. PubMed Central+1

C) Zenker's diverticulum — choose your cut, aim to divide the septum + CP

Options & how they stack up (2024-2025 view):

- Rigid endoscopic stapling (ENT/foregut teams): fast, durable in the right anatomy (adequate mouth opening/neck extension; larger pouches). PubMed Central
- Flexible endoscopic septotomy (FES): needle-knife/cap technique; broadly accessible; high technical success with acceptable recurrence that may require redo. PubMed Central
- Z-POEM (submucosal tunneling septotomy): lets you completely divide CP and the septum under a
 mucosal flap—high clinical success with promising durability vs conventional flexible septotomy in
 comparative analyses. Complications are uncommon and usually manageable. PubMed Central+1
- Open diverticulectomy + CP myotomy: excellent long-term control but higher peri-op morbidity; today used for unfavorable anatomy, failures, or very large pouches. PubMed Central

Takeaways: Endoscopic techniques (rigid or flexible) are now first-line for most symptomatic ZD; **Z-POEM** is increasingly favored for redo cases or when you want full septal division under protection. Shared decision-making around anatomy, anesthesia risk, and expertise rules. MDPI+1

D) Killian-Jamieson diverticulum — respect the nerve

- KJD sits next to the RLN, raising theoretical injury risk with blind lateral septotomy. Many surgeons still prefer open cervical diverticulectomy ± myotomy for large/symptomatic KJD. SpringerOpen
- Emerging series of KJ-POEM show high technical/clinical success without RLN injuries in expert hands—promising, but data remain limited; patient selection and informed consent matter. <u>PubMed</u> Central+1

E) Mid-thoracic (traction) diverticulum — treat the scar, not the sac (usually)

 Most are incidental; intervention is for large/symptomatic pouches (aspiration, bleeding) or complications. When due to active infection/inflammation, treat the mediastinal process; surgery reserved for selected cases. <u>Journal of Thoracic Disease+1</u>

F) Epiphrenic diverticulum — fix the motility, then the pouch (if needed)

Principle: The **driving lesion is outflow dysfunction**; diverticulectomy alone recurs and leaks. First restore flow with **myotomy** (surgical or endoscopic). <u>PubMed Central</u> **Two main pathways:**

- 1. Minimally invasive surgery
 - Laparoscopic Heller myotomy (targeted to EGJ and spastic segment) + partial fundoplication; diverticulectomy is selective—for large, retentive pouches or persistent symptoms after myotomy. Contemporary series increasingly prioritize myotomy and reserve resection.
 PubMed Central+1
- 2. Endoscopic "third-space" options
 - POEM with or without septotomy (D-POEM) for ED or post-myotomy failure; meta-analyses/cohorts show high technical and clinical success with acceptable safety. Use FLIP intra-procedurally to titrate EGJ opening. PubMed Central+2ScienceDirect+2

Leak risk management: ED resections carry meaningful leak risk; if a resection is needed, ensure **drainage** and have **EVT** in your toolkit for leaks—see Module 33. PubMed Central

G) Technique pearls & peri-procedural safety

- ZD/KJD endoscopy: mark the septum, use a transparent cap, and protect with a mucosal flap
 (Z-POEM) when doing full septal division; give prophylactic antibiotics per local policy. Ann Thorac
 Surg
- RLN-aware KJD planning: for large lateral pouches or prior neck surgery, discuss open repair; for

- endoscopic approaches, ensure **team experience** and informed consent about RLN risk/benefit uncertainty. <u>SpringerOpen</u>
- ED/achalasia overlap: always get HRM ± FLIP pre-intervention; during surgical or endoscopic myotomy, target EGJ opening and tailor length to spastic segment. <u>PubMed Central+1</u>

H) What to write in your report (clipboard)

- Barium: "Zenker's diverticulum measuring x cm at Cx level; narrow septum; contrast retention."
- EGD: "Diverticular orifice at xx cm; true lumen identified; no mucosal lesions. Planned Z-POEM with submucosal tunnel; complete septotomy confirmed; defect closed with clips." Ann Thorac Surg
- Epiphrenic: "HRM: type II achalasia; plan POEM ± diverticular septotomy. FLIP EGJ-DI improved from x to ≥~3 mm²/mmHg intra-op." JNM Journal

I) Numbers & gotchas (memorize these)

- Zenker: Endoscopic approaches (rigid stapling, flexible septotomy, Z-POEM) all achieve high technical success; Z-POEM offers more complete septal division and lower retreatment in emerging meta-analyses; open surgery is most durable but most invasive. <u>PubMed Central+1</u>
- KJD: Think RLN proximity; endoscopic KJ-POEM is promising in small series but not yet the default everywhere. PubMed Central
- Mid-thoracic traction: often leave alone unless big/symptomatic; etiology often TB/histo. NCBI
- Epiphrenic: Myotomy first; add diverticulectomy only if needed. POEM/D-POEM are valid alternatives with strong success signals. PubMed Central+1

J) Pitfalls & board-style traps

- Calling every cervical diverticulum Zenker and doing a blind septotomy on a KJ—that's how RLN
 injuries happen. Confirm position (posterior vs anterolateral) on lateral barium. PubMed Central+1
- Diverticulectomy alone for ED without myotomy → recurrence/leak. Fix the outflow. PubMed Central
- Skipping HRM/FLIP in ED—therapy without physics is guesswork. JNM Journal
- Rough entry into a large Zenker with the scope → false lumen and perforation. Use a cap, wire, or overtube and deliberate technique. MDPI

K) 10-minute drills (mini-cases)

- 79-year-old, regurgitation of undigested food, halitosis; barium: 3.5-cm posterior pouch above CP.
 Zenker. Offer endoscopic therapy; in our unit: Z-POEM for full septal division under a mucosal flap; discharge next day, liquids → soft diet. Plan follow-up; redo feasible if recurrence. PubMed Central
- 68-year-old, dysphagia + hoarseness; barium: small anterolateral cervical pouch just below CP.
 KJ diverticulum. Discuss open diverticulectomy ± myotomy vs KJ-POEM in expert hands; emphasize RLN risk/benefit and voice outcomes. SpringerOpen+1
- 3. 62-year-old, dysphagia + nocturnal cough; barium: 4-cm epiphrenic pouch; HRM: type II achalasia. Fix outflow: POEM (longer distal myotomy) ± diverticular septotomy (D-POEM) vs LHM + partial fundoplication with selective diverticulectomy if pouch remains symptomatic. Use FLIP to confirm EGJ opening. PubMed Central+2ScienceDirect+2
- 4. Incidental mid-thoracic diverticulum in patient with prior histoplasmosis; asymptomatic.
 - No intervention; counsel and observe. Reassess only if symptoms or complications emerge. NCBI

One-page takeaway

- Name the pouch, fix the physics.
 - Zenker: endoscopic septotomy/stapling are first-line; Z-POEM gives complete septal division under a flap and strong durability signals. <u>PubMed Central</u>
 - KJ: anterolateral & RLN-adjacent—open repair remains common; KJ-POEM is emerging in expert hands. PubMed Central
 - Traction (mid-thoracic): usually conservative. Journal of Thoracic Disease
 - Epiphrenic: myotomy first (surgical or POEM); diverticulectomy selective; D-POEM is a legitimate alternative. Measure with HRM/FLIP before cutting. PubMed Central+1

Next — Module 35: Rings, webs & cervical esophagus (Schatzki ring, Plummer–Vinson, CP bar, webs): efficient work-up, dilation strategies that last, iron & malignancy links, and how to keep impactions from coming back.

You said:

Next

ChatGPT said:

Request for GPT-5 Pro

Reasoned for 7m 24s

Module 35 — Rings, webs & the cervical esophagus (Schatzki ring, proximal webs/Plummer–Vinson, cricopharyngeal bar)

These lesions are the esophageal equivalent of freeway chokepoints. You don't just widen the road—you also fix the reason traffic jams there.

What you'll master

- Spot-on pattern recognition (Schatzki "B" ring vs proximal webs vs CP bar) and the right test for each (barium vs EGD vs physiology). NCBI+1
- A practical, durable treatment plan: the correct dilation target for Schatzki rings, when to incise
 instead of dilate, when to add PPI, and how to prevent recurrences. PMC+1
- Plummer–Vinson syndrome (PVS): iron first, dilation when needed, and a rational approach to cancer risk counseling. PMC+1
- Cricopharyngeal (CP) bar: who benefits from dilation, who needs myotomy (including C-POEM), and where botulinum fits. PubMed+2Annals of Esophagus+2

1) Definitions & quick anatomy map

- Schatzki ring (B ring): thin mucosal ring at the squamocolumnar junction (distal esophagus).
 Symptom severity tracks lumen size: <13 mm: almost always symptomatic; 13–20 mm: sometimes; >20 mm: rarely. Radiopaedia
- Esophageal web: thin mucosal membrane (usually proximal/cervical), often incomplete circumferentially; best seen on barium. NCBI+1
- Cricopharyngeal (CP) bar / UES dysfunction: posterior indentation at C5–C6 from a tight or hypertrophic cricopharyngeus; may coexist with Zenker's but can be isolated. PubMed

2) Work-up (choose the test that actually answers the question)

- Barium esophagram is best for webs and for mapping cervical/UES anatomy; it also quantifies ring
 caliber and can include a 13-mm tablet when you're correlating with symptoms. Dove Medical Press+1
- EGD confirms the lesion and treats it (dilation/incision). For Schatzki rings, biopsy for EoE if symptomatic or if the story hints at eosinophilia—yes, even with a ring. <u>British Society of</u> Gastroenterology
- HRM/FLIP aren't routine for rings/webs; reserve motility testing for suspected outflow or spastic disease (covered earlier) or for complex dysphagia that outlives a well-done dilation.

3) Schatzki ring — what works and why

When does a ring matter?

The "Schatzki rule" is a decent heuristic: <13 mm nearly always symptomatic; >20 mm rarely so. Use size to explain symptoms and to target your therapy. Radiopaedia

First-line therapy

- Dilation to a large diameter in one graded session (aim 16–20 mm). That target correlates with symptom relief and fewer early recurrences (BSG guideline, moderate evidence). <u>PMC</u>
- Add a PPI after dilation—reduces relapse risk (strong recommendation). PMC

Incision vs dilation

 Electrosurgical incision of the ring is a validated alternative and, in an RCT, yielded longer symptom-free survival than bougie dilation (≈8.0 vs 5.9 months) with concurrent rabeprazole. Consider it for recurrent rings or when anatomy favors cutting. PubMed

Technique notes & safety

Bougie or balloon are acceptable; choose what you do well. The old "rule of 3" (≤3 mm total up-size per session) comes from blind bougienage; under direct vision, individualized, careful upsizing beyond that has not shown higher complications in modern benign dilation series. Translate that into prudence, not fear. PMC

Don't forget the company it keeps

Schatzki rings travel with GERD/hiatal hernia and can coexist with EoE—biopsy if the phenotype or
age suggests it. Manage reflux to protect your result. British Society of Gastroenterology

4) Proximal esophageal webs & Plummer–Vinson syndrome (PVS)

PVS = triad: post-cricoid dysphagia + iron-deficiency anemia + proximal web; classically in women and associated with a higher risk of SCC of the hypopharynx/proximal esophagus. PMC Treatment sequence that actually works

- Replete iron (oral or IV). Dysphagia can improve dramatically with iron alone; many still need a
 gentle dilation for fixed webs. JAMA Network
- Endoscopic dilation (balloon or bougie) for persistent symptoms—usually one session does it; repeat if needed. Medscape
- 3. Look for causes of iron deficiency (yes, including celiac in the right population). PMC

Cancer-risk counseling

PVS carries an elevated risk of upper aerodigestive SCC; reviews quote ~4–16% in historical series, though absolute contemporary risk is lower. There's no universal surveillance protocol; give low-threshold ENT evaluation, head/neck symptom vigilance, and standard esophageal cancer caution (new/changed dysphagia, weight loss). ScienceDirect+1

Rarium vs FGD

 Barium is more sensitive for webs; EGD confirms and treats. Document location and number (webs can be multiple). Dove Medical Press

5) Cricopharyngeal (CP) bar / UES dysfunction

When is a CP bar the culprit?

 Patients report oropharyngeal-phase problems: pills/solids catching high up, need to swallow repeatedly, possible aspiration. Barium shows a posterior shelf at C5–C6; manometry can show elevated UES residual pressure but isn't mandatory when the picture is classic. <u>PubMed</u>

Therapy options & durability

- Dilation (balloon or bougie): symptom response in ~60–80% across heterogeneous series; recurrences are common but it's low risk and first-line. PubMed
- **Botulinum toxin injection** into the CP muscle: helpful for **temporary** relief or when surgery is poor risk; average success ≈ **~70–80**%, waning over months. <u>PubMed</u>
- Cricopharyngeal myotomy (open or endoscopic) offers the most durable results in good candidates; modern series favor endoscopic techniques when feasible. <u>Annals of Esophagus</u>
- C-POEM (POEM targeted to the CP): emerging data suggest high technical and clinical success in experienced centers—consider for refractory disease. PMC

6) Clipboard algorithms (fast, defensible)

A) Suspected Schatzki ring (solid-food dysphagia, distal narrowing on barium/EGD)

- 1. Dilate to 16–20 mm in a graded single session. PMC
- 2. Start PPI to reduce recurrence; manage GERD/hernia. PMC
- 3. Recurrent symptoms → consider incisional therapy (electrosurgical septotomy). PubMed
- 4. If young or "allergy-ish," biopsy for EoE at index EGD. British Society of Gastroenterology

B) Proximal web / PVS phenotype

- 1. Check CBC/ferritin → replace iron. JAMA Network
- 2. Barium to map webs; EGD to treat if symptomatic. Dove Medical Press
- 3. Dilation (usually one session); investigate iron-loss sources (celiac if indicated). PMC
- Cancer-risk talk (elevated SCC risk; no uniform surveillance)—keep low threshold for ENT evaluation and restaging if symptoms change. <u>PMC+1</u>

C) Cricopharyngeal bar

- 1. Confirm on lateral barium; consider swallow therapy input.
- Dilate first; if benefit short-lived → botulinum (frail) or myotomy/C-POEM (fit, refractory). PubMed+ 2Annals of Esophagus+2

7) Pitfalls & board traps

- Stopping at "we stretched it" for Schatzki rings and skipping the PPI—recurrences climb without acid control. PMC
- Treating recurrent rings with endless dilations but never offering incision—the RCT favors incision for longer remission. <u>PubMed</u>
- For webs, doing endoscopy first and declaring "normal": barium is more sensitive for thin proximal membranes. <u>Dove Medical Press</u>
- PVS without iron repletion—dilation alone misses the underlying driver, and you'll miss the cancer-risk counseling moment. PMC
- **CP bar**: repeating dilations forever in a good surgical candidate; for durable relief, **myotomy** outlasts botulinum in most series. <u>Annals of Esophagus</u>

8) 10-minute drills (mini-cases)

- 58-year-old with intermittent "steak-sticks" chest episodes; barium: distal ring, est. lumen 12–13 mm.
 - EGD dilation to 18–20 mm + start PPI. If relapse in months, offer electrosurgical incision of the ring. PMC+1
- 2. 41-year-old woman, microcytic anemia, solids catch high in neck; barium shows thin proximal web.
 - Iron repletion; if dysphagia persists, single gentle balloon dilation (15–18 mm). Counsel on elevated SCC risk and ENT follow-up. Screen for celiac if history supports. <u>JAMA Network+</u> 2ScienceDirect+2
- Older man, "food hangs at the sternal notch," lateral neck film: CP bar; aspiration on swallow study.
 - Dilation first; if transient effect or high-stakes aspiration, discuss endoscopic CP myotomy (or C-POEM) vs botulinum if he's a poor surgical candidate. PubMed+2Annals of Esophagus+2
- 4. Recurrent Schatzki symptoms despite two good dilations.
 - Confirm reflux control (PPI adherence), consider incision at next EGD; if ring keeps reforming, revisit anatomy (hiatal hernia repair?) and EoE biopsies. PMC+1

- -

One-page takeaway

- Schatzki ring: Dilate big (16–20 mm) and add PPI; for recurrences, incise. Size explains symptoms (<13 mm nearly always symptomatic). PMC+2PubMed+2
- Proximal webs/PVS: Iron first, then single-session dilation if needed; remember the (historically) increased SCC risk—counsel and keep a low threshold for ENT/EGD when symptoms change. PMC+1
- CP bar: start with dilation, but plan for myotomy (or C-POEM) when durable relief is the goal;
 botulinum is a reasonable temporary bridge. PubMed+2Annals of Esophagus+2

Next — Module 36: Caustic ingestions & corrosive esophageal injury

ED triage (airway, early imaging), **EGD timing**, Zargar grading, steroid/stent data, and late-stricture prevention with a clean dilation program.

You said:

Next

ChatGPT said:

Request for GPT-5 Pro

Reasoned for 7m 43s

Module 36 — Spontaneous & traumatic esophageal tears (Boerhaave, Mallory–Weiss) + intramural hematoma: act fast, choose wisely, don't overtreat

Not every post-emetic chest pain is reflux. Sometimes the tube split, sometimes the mucosa cracked, sometimes the wall filled with blood. The physics (pressure vs shear) tells you which—and the therapy follows.

What you'll master

- A first-hour plan for suspected Boerhaave (spontaneous perforation): CT first, broad antimicrobials, source control choices (EVT/stent vs surgery). <u>BioMed Central</u>
- Mallory-Weiss tears (MWT): who needs endoscopic hemostasis, which modality, and how to write the PPI plan without hand-waving. Darmzentrum Bern+2sae-emergencias.org.ar+2
- Intramural hematoma of the esophagus (IMH): when conservative care is enough and how to avoid iatrogenic misadventures. NCBI

A) Spontaneous esophageal perforation (Boerhaave) — the "don't blink" pathway

Clinical tells

Sudden severe chest/upper abdominal pain after forceful emesis, dyspnea, subcutaneous emphysema; can be subtle in the elderly. Delay kills. Mortality rises with time to therapy. BioMed Central Imaging first line

 Contrast-enhanced CT / CT-esophagography is the imaging of choice (sensitivity ~92–100%), maps air/fluid, and guides therapy. Water-soluble swallow is secondary. BioMed Central

Immediate bundle (before the definitive fix)

NPO, large-bore IVs, broad-spectrum IV antibiotics (aerobic/anaerobic oral flora) ± antifungal per local policy; early drainage of collections if present. High-flow O₂, analgesia, and surgical + interventional endoscopy + IR on speed dial. BioMed Central

Choosing the closure/diversion strategy (physics + contamination):

- Stable, contained leak or cavity accessible endoscopically → endoscopic therapy:
 - EVT (endoscopic vacuum therapy) when a cavity exists or sepsis is present; sponge exchanges every 48–72 h until granulation closes the defect. Often superior to stents for cavitary leaks.
 BioMed Central
 - Fully covered SEMS when the defect is linear/small without a sizable cavity; must pair with drainage if collections exist. <u>BioMed Central</u>
- Unstable patient, free perforation, diffuse mediastinitis, or extensive necrosis → operative source control (primary repair ± buttress, diversion/resection when necessary) with drainage; time matters.
 BioMed Central

Practical rule: CT to stage → source control (endoscopic or surgical) + drainage → nutrition distal (NJ/jejunostomy) while healing proceeds. WSES hammers on early treatment as the strongest survival predictor. BioMed Central

B) Mallory–Weiss tears (MWT) — most stop; treat the ones that don't

What it is

Longitudinal **mucosal** laceration at the GEJ after retching/vomiting; many **self-limit**. Your job is to identify the minority that **need hemostasis**.

ED/inpatient basics for NVUGIB (applies here too)

 Risk assess (e.g., GBS), restrictive transfusion (threshold 7 g/dL), and consider IV erythromycin pre-EGD to improve visualization. Get endoscopy as soon as feasible after resuscitation.
 Darmzentrum Bern

When to treat endoscopically

• Active bleeding or high-risk stigmata (non-bleeding visible vessel, adherent clot). If oozing has

stopped and no stigmata, you usually don't treat. sae-emergencias.org.ar

How to treat (pick one effective modality; avoid injection-alone):

- Clips, band ligation, or thermal contact (heater probe). Epinephrine alone is not recommended—if
 used, combine with a definitive modality. sae-emergencias.org.ar+1
- Refractory bleeding: OTSC or topical hemostatic powder as salvage (center-dependent). saeemergencias.org.ar

Acid suppression afterward

Follow general NVUGIB guidance: after successful endoscopic hemostasis, high-dose PPI for 72 h
 (continuous or intermittent), then BID PPI for 2 weeks. If you did no endoscopic therapy (low-risk
 lesion), standard daily PPI for symptom control suffices. Darmzentrum Bern

C) Intramural hematoma of the esophagus (IMH) — dramatic but usually benign

Clup

Sudden chest pain/dysphagia/hematemesis after retching, **anticoagulation**, coagulopathy, or minor trauma; CT shows **circumferential esophageal wall thickening** with luminal narrowing; endoscopy reveals submucosal bluish bulge ± longitudinal mucosal tear.

Management is almost always conservative

NPO → liquids → soft diet as symptoms ease, IV fluids, PPI, correct coagulopathy/hold
anticoagulants, serial clinical/imaging reassessment. Most resolve over 1–2 weeks. Intervention
(embolization or surgery) is rare and reserved for complications or diagnostic uncertainty. NCBI+
2PMC+2

D) Clipboard algorithms (copy-paste practical)

1) Suspected Boerhaave in the ED/ICU

- 1. ABCs, NPO, IV access, broad-spectrum antibiotics.
- 2. CT chest/abdomen with oral water-soluble contrast (± IV contrast).
- If contained/cavity → EVT (48–72 h exchanges) ± percutaneous drains; if linear/no cavity → FC-SEMS + drainage PRN.
- 4. If unstable/diffuse contamination/necrosis → surgery now.
- 5. Enteral feeding distal (NJ/J-tube) and daily reassessment. BioMed Central

2) Mallory-Weiss tear at EGD

- Active bleed/high-risk stigmata → clips/band/thermal; avoid epi alone.
- Post-hemostasis PPI: high-dose for 72 h, then BID PPI 2 weeks.
- No stigmata → conservative care ± standard PPI. sae-emergencias.org.ar+1

3) Intramural hematoma

Conservative: NPO → advance diet, PPI, reverse/hold anticoagulants, observe; no dilation during the
acute phase. Escalate only for complications. NCBI

E) Numbers & thresholds that stick

- CT for perforation: sensitivity ~92–100%; first-line over routine contrast swallow. BioMed Central
- Time matters in perforation—earlier source control improves survival. BioMed Central
- MWT: treat only active/high-risk lesions; epinephrine monotherapy = no; PPI high-dose 72 h → BID
 2 weeks after hemostasis. sae-emergencias.org.ar+2Esge+2
- IMH: conservative care → resolution in 1–2 weeks in most cases. NCBI

F) Pitfalls & how to dodge them

- Ordering a routine day-1 barium swallow for suspected Boerhaave while the patient deteriorates do CT and move to source control. BioMed Central
- Stenting a big, dirty cavity without drainage—failure is likely; choose EVT or stent + drainage.
 BioMed Central
- Epinephrine-only therapy for MWT—short-lived vasoconstriction → rebleed risk; combine or pick a
 definitive modality. Esge
- Dilating an acute intramural hematoma—you'll make it worse. Let it heal. NCBI

G) 10-minute drills (mini-cases)

- 1. Post-emetic chest pain, emphysema on CXR.
 - CT esophagography → contained distal tear with mediastinal collection → EVT + percutaneous drain, broad antibiotics, NJ feeds; exchanges q48–72 h until closure. BioMed Central
- 2. Hematemsis after binge drinking; at EGD a 1.5-cm GEJ tear with active oozing.
 - Hemoclips (or band/thermal) to achieve hemostasis → high-dose IV PPI 72 h, then PO BID 2 weeks. Darmzentrum Bern+1
- Warfarin user with sudden chest pain, dysphagia; CT shows circumferential esophageal wall hematoma.
 - Reverse anticoagulation, NPO → liquids, PPI, monitor; no endoscopic therapy unless complications. Expect resolution in ~1–2 weeks. NCBI

One-page takeaway

- Boerhaave: CT first, then early source control (EVT for cavities; FC-SEMS for linear/no cavity; surgery if unstable/dirty), drain, and feed distal. Time is prognosis. BioMed Central
- Mallory-Weiss: treat only active/high-risk tears; clips/band/thermal, never epi alone; high-dose PPI
 72 h → BID 2 weeks after hemostasis. sae-emergencias.org.ar+1
- Intramural hematoma: conservative care wins; don't dilate the bruise. NCBI

Up next — Module 37: Esophageal subepithelial lesions & cysts (leiomyoma, GIST, granular cell tumor, duplication cyst)

Imaging fingerprints on **EUS/CT**, when to **resect vs surveil**, endoscopic resection options (STER/EFTR), and how to avoid perforation while proving the diagnosis.

You said:

Next

ChatGPT said:

Request for GPT-5 Pro

Reasoned for 5m 59s

Module 37 — Esophageal subepithelial lesions (SELs) & cysts: EUS-first, cut only with a reason Most "submucosal bumps" are innocent passengers. Some are not. Your job: (1) stage the physics with EUS, (2) decide if you need tissue (and how), (3) treat selectively—favoring techniques that match depth (EMR/ESD/STER/EFTR) and the biology (leiomyoma vs GIST vs granular cell tumor vs duplication cyst).

1) Fast taxonomy (what's common, what mimics what)

- Leiomyoma (most common esophageal SET): homogeneous hypoechoic lesion from muscularis propria (4th layer), smooth margins. Immuno: SMA/desmin+, KIT/DOG1-. Usually benign. E-CE
- GIST (rare in esophagus): also 4th layer, often irregular with heterogeneity, cystic spaces, echogenic foci, ulceration—features that track with malignant potential. Immuno: KIT/DOG1+. PMC+1
- Granular cell tumor (GCT): usually 2nd/3rd layer, hypoechoic, sometimes with overlying yellow hue endoscopically. Schwann-cell origin (S100+). Mostly benign. PMC
- Duplication cyst: anechoic or hypoechoic cystic lesion with a multi-layer wall; often
 mediastinal/para-esophageal; infection after sampling is the trap. PMC
- Less common: Schwannoma (S100+, benign), lipoma (3rd layer, hyperechoic), ectopic pancreas (heterogeneous 3rd layer). ESGE groups several of these as benign lesions that don't need surveillance if diagnosis is secure. Esge

2) Work-up that wastes nothing

A. First pass

- **High-definition EGD**: describe size (mm), location, cushion/pillow signs, umbilication/erosion.
- EUS for layer of origin, size, echotexture, margins, and risk features (irregular borders, cystic spaces, echogenic foci, ulceration, nodes). EUS is the best single test to characterize SELs, though not perfect for exact histology. ESSE

B. Do I need tissue?

- Suspected GIST: ESGE suggests tissue diagnosis when >20 mm, high-risk EUS features, or surgery/oncologic therapy is being planned. Use EUS-FNB or MIAB (mucosal incision-assisted biopsy) equally for ≥20 mm lesions. Esge
- Clear benign signature (leiomyoma, lipoma, GCT, schwannoma) and asymptomatic → no surveillance needed once diagnosis is secure; if histology is uncertain, surveil (see intervals below).
 Esge
- Duplication cyst: avoid routine EUS-FNA—post-FNA infection rates up to ~14% are reported; reserve sampling for indeterminate or atypical cases where the result will change management (and give antibiotics if you must sample). PMC+1

C. If you choose surveillance (diagnosis not secured)

Asymptomatic esophageal/gastric SEL without diagnosis: EGD at 3–6 mo, then every 2–3 y if
 10 mm; 1–2 y if 10–20 mm. If >20 mm and not resected, EGD + EUS at 6 mo, then every 6–12 mo.
 Esge

3) Management by histology (and depth)

A) Leiomyoma (benign muscle tumor; symptoms and size drive decisions)

- When to treat: symptomatic (dysphagia, chest pain), growth, or large size. Contemporary reviews suggest intervention for symptomatic or >5 cm tumors; otherwise observe. PMC
- How to treat
 - Thoracoscopic/robotic enucleation = longstanding gold standard for large or extramural tumors. PMC
 - Endoscopic options for intraluminal MP lesions: STER (submucosal tunneling endoscopic resection) gives en-bloc removal with mucosal preservation; pooled analyses show high efficacy and safety. Emerging series even report success for lesions ≥5 cm in expert hands.

2PMC+2

B) GIST of the esophagus (rare, potentially malignant)

- Before cutting, prove it (EUS-FNB/MIAB) if size >20 mm or high-risk features or if you'd change to surgery/oncology based on the result. <u>Esge</u>
- EUS "red flags" for malignant potential: irregular margins, cystic spaces, echogenic foci, ulceration, adjacent nodes. These correlate with higher-risk biology. PMC+1
- Resection strategy: usually surgical (segmental resection/enucleation depending on size/location)
 with negative margins; tailor to MDT guidance (NCCN/ESMO for systemic therapy if indicated).
 Endoscopic resection of small, histology-proven GISTs is reported but should be individualized by
 expertise and location. Esge
- If you surveil (e.g., tiny lesion without risk features): follow ESGE intervals above; reconsider tissue/resection if it grows or develops high-risk stigmata. Esge

C) Granular cell tumor (GCT)

- Who needs resection? Symptomatic or >10 mm commonly resected endoscopically (EMR/ESD/ESR);
 small (<10 mm), asymptomatic lesions can be observed if diagnosis is secure. PMC
- Technique/outcomes: Recent series show endoscopic resection is safe/effective; microscopically
 positive margins have not consistently predicted recurrence in GCT, but close follow-up is
 reasonable if margins are indeterminate. PMC
- Surveillance: ESGE says no routine surveillance after curative resection of benign SELs (GCT included). If margins are positive/uncertain, re-look at 3–6 mo. Esge

D) Duplication cyst

- Don't stick the cyst (unless you must): infection after EUS-FNA occurs in ~14% in series despite
 antibiotics. If classic on imaging/EUS and asymptomatic, observe. PMC+1
- Treat when symptomatic (dysphagia, pain), complicated (infection/bleeding), or when diagnosis is
 uncertain. Minimally invasive surgical enucleation (VATS/robotic) is preferred; endoscopic
 drainage/unroofing has been described but carries infection/recurrence risk—reserve for select
 cases in expert centers. PMC

4) Choosing the endoscopic resection method (depth dictates device)

Lesion depth	Typical targets	Techniques
Mucosa/Submucosa (2nd–3rd layer)	Small GCT , lipoma, ectopic pancreas	EMR, ESD/ESR (size/vascularity dependent) Annals of Esophagus
Muscularis propria (4th layer)	Leiomyoma , small low-risk GIST (selected)	STER (preferred), EFTR/ESE when full-thickness acceptable <u>Annals of Esophagus+1</u>

Quality/safety notes

- Keep the mucosa intact when possible (STER) to lower perforation/leak risk; if you go full-thickness, plan closure (clips/suturing) and antibiotics per local protocol. Annals of Esophagus
- STER data: meta-analyses show high en-bloc and R0 rates with low AEs; 2025 prospective cohorts
 extend feasibility to selected ≥5 cm tumors at expert centers. Don't extrapolate beyond your
 program's experience. ScienceDirect+1

5) Reporting that future-you will love (clipboard)

- **Endoscopy**: "Subepithelial lesion **xx mm** at **xx cm** (clock-face position). Mucosa intact; no ulceration. Bite-on-bite biopsies avoided."
- EUS: "Layer of origin (e.g., 4th); echogenicity homogeneous hypoechoic; margins smooth; no cystic spaces/echogenic foci/ulceration/nodes. Impression: leiomyoma vs GIST." Cite risk stigmata explicitly. PMC
- Plan: "Given size >20 mm/high-risk features, proceed to EUS-FNB/MIAB for histology." Or: "Classic leiomyoma signature; no sampling/surveillance per ESGE; discuss STER if symptomatic." Esge

6) Pitfalls that cause re-work (and complications)

- Sampling duplication cysts casually → infection. Only sample if the diagnosis is truly indeterminate
 and result will alter management; cover with antibiotics if you must. PMC
- Calling every 4th-layer hypoechoic mass a leiomyoma without checking risk features (irregular borders, cystic change, echogenic foci). That's how you miss GIST. PMC
- Endoscopic resection when surgery is the better physics (very large, exophytic, or awkward location without closure capability). Match tool to tumor and wall layer. Annals of Esophagus
- Endless surveillance of clearly benign lesions (leiomyoma, lipoma, schwannoma, GCT) once diagnosis is secure—ESGE says don't. ESGE

7) Mini-algorithms (ready to paste)

A) 15-mm distal SEL, 4th-layer, smooth & homogeneous; patient symptomatic

→ Likely leiomyoma. Discuss STER (or surgical enucleation if extramural). No need for FNB if classic and

proceeding to resection; if observing, **no surveillance** once diagnosis is confirmed. Annals of Esophagus+1

B) 22-mm mid-esophageal SEL with irregular margins and cystic spaces on EUS

→ Suspected GIST. Plan EUS-FNB/MIAB for histology, MDT discussion; resect surgically (or selected endoscopic resection if appropriate). Surveillance only if truly low-risk and patient declines intervention. Esge+1

C) 8-mm subepithelial nodule, yellowish dome; EUS 3rd layer, hypoechoic

→ GCT. If asymptomatic, observe; if ≥10–15 mm or symptomatic, EMR/ESD; if margin indeterminate, short-interval re-look. PMC+1

D) Anechoic para-esophageal cyst with 3-layer wall; asymptomatic

→ Duplication cyst. No FNA; observe. If symptomatic or complicated, VATS/robotic enucleation; reserve endoscopic drainage for special circumstances in expert centers. PMC

8) Numbers to keep in your pocket

- EUS is the best characterization tool; EUS alone cannot always give histology. Esge
- When to biopsy: suspected GIST >20 mm or with high-risk features or slated for oncologic/surgical therapy. EUS-FNB or MIAB are both solid choices for ≥20 mm. Esge
- Surveillance (unknown histology): <10 mm → 3-6 mo then q2-3 y; 10-20 mm → q1-2 y; >20 mm not resected → EGD+EUS at 6 mo, then q6-12 mo. Esge
- Benign & diagnosed (leiomyoma, lipoma, GCT, schwannoma) → no surveillance required. Esge
- Duplication cyst FNA infection: reported ~14% → avoid unless management hinges on it. PMC
- STER: effective/safe for MP-origin SELs; growing data even for ≥5 cm tumors in expert centers.
 ScienceDirect+1

One-page takeaway

- Characterize with EUS, then decide smartly about tissue: biopsy suspected GIST when big (>20 mm),
 risky-looking, or when surgery/oncology is on the table; otherwise you can often skip biopsies in
 classic benign lesions. Esge
- Treat the wall you're in: mucosa/submucosa → EMR/ESD; muscularis propria → STER (or surgery when large or awkward). Don't lance duplication cysts unless you must. Annals of Esophagus+1
- Avoid follow-up fatigue: diagnosed benign SELs (leiomyoma, lipoma, GCT, schwannoma) don't need surveillance; undiagnosed lesions get intervals based on size. Esge

Next — Module 38: Caustic ingestions & corrosives (triage to strictures) or we can jump to esophageal cancer (staging & therapy) if you'd rather pivot back to malignancy workflows.

You said:

How many more module are you planning

ChatGPT said:

Request for GPT-5 Pro

Reasoned for 4m 37s

Short answer: **four more**. We're at Module 37; I'm planning to land the series at **Module 41**. Here's the home stretch:

- Module 38 Esophageal cancer: staging & local therapy
 - EUS/CT/PET staging; T/N/M pitfalls; who gets EMR/ESD vs esophagectomy vs definitive chemoradiation; how to write stage-based plans that surgeons and oncologists actually nod at.
- Module 39 Esophageal cancer: systemic therapy & palliation
 - Neoadjuvant/adjuvant regimens, immunotherapy/targeted updates (PD-1, HER2, CLDN18.2 where relevant), nutrition, dysphagia control (brachy vs stent), survivorship and surveillance.
- Module 40 Benign strictures masterclass (RBES)
 - Peptic/anastomotic/caustic/radiation/EoE strictures; dilation strategy that lasts, adjuncts (steroids, incisional therapy, MMC), temporary FC-SEMS, self-dilation programs, when to escalate to surgery.
- Module 41 Functional & behavioral esophageal disorders
 - Functional heartburn, reflux hypersensitivity, functional chest pain, globus, rumination & supragastric belching—objective testing patterns, neuromodulators, behavioral therapy, and tight referral scripts.

If you prefer a tighter sprint, I can compress the oncology pair into one and finish in **three**; otherwise I'll stick with the four-module finish.

You said:

Next

ChatGPT said:

Request for GPT-5 Pro

Reasoned for 7m 36s

Module 38 — Esophageal cancer: staging & local therapy (from microscope to operating room)
The job here is to stage cleanly, decide who can be cured endoscopically, and who needs esophagectomy or chemoradiation. Precision now prevents regret later.

What you'll master

A crisp staging workflow (CT → PET/CT → EUS-FNA) and when to add bronchoscopy or (selective) staging laparoscopy. PMC+4ACR AcSearch+4PMC+4

- The AJCC 8th "2-cm rule" for EGJ tumors and why Siewert I/II usually stage as esophageal. ACS+1
- Exact endoscopic cure criteria (EAC vs ESCC), when EMR is enough, when ESD is better, and when to stop and escalate. PubMed+2Esge+2
- How neoadjuvant strategies (e.g., CROSS) interface with surgery—and how 2025 ESMO thinking is shifting for adenocarcinoma. ASCO Publications+2PubMed+2

A) First principles — name the tumor correctly

- Histology & site drive the lane. SCC behaves differently from adenocarcinoma (EAC); cervical SCC often dCRT, distal EAC often surgery/CRT. We'll stage both the same way first.
- AJCC 8th "2-cm rule" at the EGJ: Tumors with their epicenter ≤2 cm into the gastric cardia (Siewert I–II) are staged as esophageal; >2 cm are gastric. This matters for stage grouping and guideline pathways. ACS+1

B) The staging workflow (do this in order)

- 1. High-quality EGD with careful mapping/biopsies.
 - For visibly superficial lesions, do not burn time or budget on routine EUS/CT/PET before
 resection. ESGE: EUS/CT/PET-CT not routinely recommended prior to endoscopic resection of
 superficial lesions. Esge
- Contrast-enhanced CT of chest/upper abdomen to screen for distant disease (liver/adrenals; pelvis optional). ACR AcSearch
- 3. FDG-PET/CT in surgical/definitive-therapy candidates to unmask distant metastases and discordant nodes that CT misses. (It upstages a useful minority and avoids non-curative operations.) PMC
- 4. EUS ± FNA after CT/PET excludes M1 disease.
 - EUS is best for T and regional N; add FNA for suspicious nodes (celiac, mediastinal) when accessible to avoid undertreatment. PMC+1
- 5. Bronchoscopy for upper/mid-thoracic tumors if airway invasion is a concern (CT/EUS can suggest, but bronchoscopy confirms). Journal of Thoracic Disease
- 6. Selective staging laparoscopy for EGJ adenocarcinoma with meaningful gastric extension or cT3-4/positive nodes—this is debated for Siewert II; reserve for higher-risk patterns or institutional pathways. PMC+1
 - **Restaging after neoadjuvant therapy:** PET/CT helps catch **interval metastases**; neither CT nor EUS reliably re-T stage after CRT. Use PET/CT to rule out new M1, not to "declare pCR." PMC+1

C) Who can be cured endoscopically?

Think in two families with different lymph-node biology.

1) Barrett-related adenocarcinoma (EAC) & dysplasia

- EET (endoscopic eradication therapy) is standard for HGD and T1a (intramucosal) EAC: resect the
 visible lesion (EMR or ESD) then ablate the residual Barrett's (usually RFA) to eradicate the field.
 PubMed+1
- EMR vs ESD for Barrett's:
 - o **EMR** is first-line for many nodular lesions ≤20 mm.
 - ESD preferred for lesions >20 mm, scarred, or suspicious for submucosal invasion—higher en-bloc/R0. www.asge.org+1
- T1b (submucosal) EAC: LNM risk rises steeply; meta-analyses report ~18–33% overall, driven by depth >500 μm, poor differentiation, or LVI. Select "low-risk" T1b (sm1 ≤500 μm, G1–2, LVI–) may be managed endoscopically in expert centers with full staging and close follow-up; otherwise favor esophagectomy or multimodality therapy. PMC+2PubMed+2

2) Superficial squamous cell carcinoma (ESCC)

- ESD is treatment of choice for most superficial ESCC; routine pre-resection EUS/CT/PET not required.
- Curative (very-low/low-risk) ESD generally means en-bloc R0 with invasion no deeper than m2 (very-low risk) or sm1 ≤~200–500 μm (low risk), well/moderate differentiation, no LVI, and lesion size ≤20 mm. Deeper invasion, positive vertical margin, LVI, or poor grade → non-curative: stage fully and escalate. Esge
 - Why ESD over "piecemeal anything" here? You need en-bloc for exact depth/margins; histology after piecemeal EMR can't safely rule out sm invasion or LVI.

D) When local therapy means surgery or chemoradiation

- Resectable locally advanced disease (cT2-T4a and/or node-positive):
 - Two dominant strategies for adenocarcinoma: neoadjuvant chemoradiation (CROSS) or perioperative chemotherapy (e.g., FLOT). CROSS shows a 10-year OS benefit (38% vs 25%) vs surgery alone; ESMO 2025 notes growing preference for perioperative chemotherapy for many EAC, with CROSS still appropriate depending on tumor and center. Surgery follows response. ASCO Publications+1
 - For SCC, neoadjuvant CRT (CROSS-like) → surgery improves long-term outcomes; definitive CRT is a valid alternative for cervical tumors or non-surgical candidates. <u>PubMed+1</u>

E) Early-cancer endoscopy: a minimal-waste protocol (clipboard)

- 1. Suspicious flat/nodular lesion in BE
 - HD-WL + virtual/dye chromoendoscopy → EMR for nodules ≤20 mm; ESD if >20 mm/scar/sm-suspicious.
 - o If **HGD/T1a** with **R0** \rightarrow **RFA** to eradicate BE.
 - If T1b or adverse histology (LVI/poor diff/vertical margin+) → CT ± PET/CT → EUS-FNA →
 MDT for esophagectomy vs CRT. www.asge.org+1
- 2. Superficial ESCC
 - o **ESD en-bloc** upfront (no routine EUS/CT/PET beforehand).
 - If curative histology (≤m2 or sm1 low risk) → surveil; if non-curative → CT/PET/EUS-FNA ± CRT/surgery. Esge
- 3. Bulky, obstructing, or mid-thoracic mass
 - CT chest/abdomen with contrast → PET/CT if candidate; EUS-FNA for T/N; bronchoscopy if airway concern; MDT for neoadjuvant path. <u>ACR AcSearch+2PMC+2</u>

F) Numbers & thresholds to remember (you'll use them weekly)

- EGJ staging rule: epicenter ≤2 cm into cardia → esophageal staging; >2 cm → gastric. ACS
- EAC T1 LNM risk: T1a ~4-6%, T1b ~18-33% overall; "low-risk T1b" = sm1 ≤500 μm, G1-2, LVI– (consider endoscopic cure only in expert programs). PMC+1
- ESCC curative ESD: en-bloc R0, no LVI, ≤m2 (very-low) or sm1 low-risk (size ≤20 mm). Esge
- CROSS (nCRT→surgery) 10-year OS: 38% vs 25%; durable benefit in both SCC and EAC. ASCO
 Publications

G) Pitfalls that cost cures

- Doing EUS/CT/PET for every tiny, flat lesion instead of resecting it first—ESGE says don't for superficial disease; histology from en-bloc resection is the staging. <u>Esge</u>
- Piecemeal EMR for a large/suspicious Barrett's lesion—depth is unknowable → wrong triage; choose
 ESD. www.asge.org
- Skipping PET/CT before surgery/CRT—missed M1 = non-curative treatment. PMC
- Ignoring the airway in upper/mid lesions—scope the tracheobronchial tree when in doubt. <u>Journal</u>
 of Thoracic Disease
- Universal staging laparoscopy for Siewert II—evidence is mixed; reserve for higher-risk gastric extension/biologic concern. PMC

H) 10-minute drills (mini-cases)

- 1. 2-cm Paris 0-IIa lesion on a Barrett's tongue; HD-NBI shows irregular pattern
 - \rightarrow ESD (size >20 mm/sm-suspicious). Histology T1a, R0, G2, LVI- \rightarrow RFA to eradicate BE; routine EUS/CT/PET not needed pre-resection. www.asge.org+1
- 2. Flat Lugol-voiding island in mid esophagus (ESCC phenotype)
 - ightarrow ESD en-bloc. If m2 R0 LVI– ightarrow curative; surveillance only. If sm2 or LVI+ ightarrow CT/PET/EUS-FNA and CRT/surgery plan. Esge
- 3. Dysphagia with tight mid-thoracic stricture
 - \rightarrow CT with contrast \rightarrow PET/CT if candidate \rightarrow EUS-FNA for T/N (post-dilation if safe) \rightarrow bronchoscopy to exclude airway invasion \rightarrow nCRT (CROSS) \rightarrow surgery if resectable. <u>ACR AcSearch+</u> 2PMC+2
- 4. Siewert II EAC with 3 cm gastric extension, cT3N+
 - → Consider staging laparoscopy (peritoneal risk higher with gastric extension); oncologic path likely perioperative chemotherapy or CROSS depending on MDT/center. PMC+1

One-page takeaway

- Stage smart: CT → PET/CT → EUS-FNA (bronchoscopy for upper/mid). PET/CT is to avoid non-curative local therapy; EUS is to get true T/N once M1 is excluded. <u>Journal of Thoracic Disease+</u> 3ACR AcSearch+3PMC+3
- Endoscopic cure is real—when biology allows.
 - EAC: HGD/T1a → EMR/ESD + RFA; T1b only if sm1 ≤500 μm, G1-2, LVI- in expert hands. PubMed+ 2www.asge.org+2
 - ESCC: ESD for most superficial lesions; curative if R0, no LVI, ≤m2 or sm1 low-risk. Esge
- When local therapy escalates: For cT2+ and/or N+, expect nCRT (CROSS) → surgery or perioperative chemo (EAC), and definitive CRT when surgery isn't the right physics. ASCO Publications+1

survivorship/surveillance.

You said:

Next

ChatGPT said:

Request for GPT-5 Pro

Reasoned for 12m 13s

Module 39 — Esophageal cancer: systemic therapy & palliation (IO, targets, nutrition, dysphagia control) The mission here is twofold: pick the **right systemic lane** for the biology and stage, then **keep patients swallowing** while treatment does its work. No heroics—just clean decisions.

What you'll master

- Systemic therapy by setting & histology (adenocarcinoma vs squamous), including where PD-1
 inhibitors slot in first line, adjuvant nivolumab after trimodality therapy, and what's real vs hype in
 2025. U.S. Food and Drug Administration+3FDA Access Data+3FDA Access Data+3
- Perioperative chemo vs CROSS for resectable EAC (the ESOPEC signal toward FLOT), and how ESMO is updating guidance. ASCOPubs+2The ASCO Post+2
- Targeted/biomarker therapy at the GEJ—HER2, CLDN18.2, PD-L1 CPS—and the exact places they're approved. <u>U.S. Food and Drug Administration+2U.S. Food and Drug Administration+2</u>
- Practical palliation of dysphagia (stents vs radiotherapy, including brachy vs EBRT) with survival-sensitive triage. <u>Annals of Esophagus+2PubMed+2</u>

A) Resectable disease: systemic partners for local therapy

1) After neoadjuvant chemoradiation + surgery (trimodality)

 Adjuvant nivolumab (CheckMate-577) is standard for residual pathologic disease after nCRT—esophagectomy; it improves disease-free survival vs placebo. Final analyses show numerically longer OS but not statistically significant; DFS benefit is durable. jons-online.com+1

2) Neoadjuvant/Perioperative strategy for EAC (CROSS vs FLOT)

- Historical default: **CROSS** (carboplatin/paclitaxel + 41.4 Gy) → surgery.
- ESOPEC (ASCO 2024): Perioperative FLOT (5-FU/leucovorin/oxaliplatin/docetaxel, pre- and post-op) improved OS vs CROSS in resectable adenocarcinoma (median OS ≈ 66 mo vs 37 mo, HR ≈ 0.70; consistent across analyses). Multiple commentaries and updates now place FLOT as preferred for many EAC patients fit for triplet chemotherapy. The ASCO Post+2ASCOPubs+2
- Guideline drift: ESMO's 2025 interim update reflects a growing role for perioperative chemo (FLOT) in locally advanced EAC/EGJ adenocarcinoma; local MDT norms still matter. esmoopen.com
 How to choose today (workable heuristic):

Fit EAC patient, no contraindication to triplet chemo \rightarrow **Peri-op FLOT**.

Borderline fitness, need downstaging of bulky primary or planned adjuvant nivolumab path \rightarrow **CROSS** remains reasonable. Re-stage with **PET/CT** to rule out interval M1 before surgery. (Staging module just prior.) OncLive

B) Unresectable or metastatic disease: first lines that actually move OS

1) Esophageal squamous cell carcinoma (ESCC)

- First line: Nivolumab + fluoropyrimidine/platinum improved OS vs chemo alone (CheckMate-648), with especially strong benefit in PD-L1-positive tumors; FDA label now includes nivolumab + chemo and also nivolumab + ipilimumab for unresectable/metastatic ESCC. PubMed+1
- First line (alternative): Pembrolizumab + cisplatin/5-FU (KEYNOTE-590) improves OS in esophageal carcinoma (SCC and adenocarcinoma) vs chemo; effect is strongest in CPS ≥ 10. U.S. labeling allows pembrolizumab + chemo for esophageal or GEJ carcinoma in the first line; check local payer restrictions on PD-L1. U.S. Food and Drug Administration+1
- After platinum: Tislelizumab (Tevimbra) received FDA approval (2024) for advanced ESCC previously treated with chemotherapy. Nivolumab and pembrolizumab have also shown benefit in selected second-line settings across regions/trials. Reuters

2) Adenocarcinoma (EAC & GEJ adenocarcinoma)

- HER2-negative, first line (GEJ/gastric biology): Pembrolizumab + chemo (KEYNOTE-859) improves
 OS in HER2-negative gastric/GEJ adenocarcinoma; many distal Siewert I–II "EGJ" tumors in practice
 follow this pathway when managed as GEJ. (Regulatory and staging categories differ; verify
 eligibility.) PubMed+1
- HER2-positive, first line (GEJ/gastric): Pembrolizumab + trastuzumab + chemo has standard FDA approval (2025) for PD-L1 CPS ≥ 1 HER2-positive gastric/GEJ adenocarcinoma (KEYNOTE-811). <u>U.S. Food and Drug Administration+1</u>
- CLDN18.2-positive, HER2-negative (GEJ/gastric): Zolbetuximab + platinum/fluoropyrimidine is FDA-approved first-line (2024). Test CLDN18.2 early in GEJ/gastric phenotypes. <u>U.S. Food and Drug</u> Administration
- Second line for gastric/GEJ biology: Ramucirumab + paclitaxel (RAINBOW) improves OS and remains
 the workhorse; monotherapy ramucirumab (REGARD) is an option if taxanes aren't tolerated. The

Tumor-agnostic checks to never forget: MSI-H/dMMR → PD-1 therapy eligibility; TMB-high may also qualify in some regions. Rare in pure esophageal primaries but worth testing—especially in adenocarcinoma. U.S. Food and Drug Administration

C) Definitive chemoradiation (non-operative intent): where does IO fit?

For unresectable disease treated with definitive CRT, multiple phase 3 programs are
ongoing/immature (e.g., KEYNOTE-975 with pembrolizumab; KUNLUN with durvalumab). No
completed phase-3 result has reset the standard of care yet—don't assume routine IO outside a
trial. PMC+2PubMed+2

D) Biomarker panel you actually need (and when)

- All advanced/metastatic adenocarcinomas: HER2, PD-L1 CPS, CLDN18.2 (for GEJ/gastric), MSI/dMMR (and consider TMB). These drive first-line choices and clinical trials. <u>U.S. Food and Drug</u> Administration+2U.S. Food and Drug Administration+2
- 2. Squamous: PD-L1 helps with risk/benefit conversations but nivolumab + chemo has an all-comers label in ESCC; still check PD-L1 for shared decision-making. FDA Access Data

E) Palliation of dysphagia: pick by time horizon

Goalposts: fast relief vs durability.

- If expected survival is >~3 months and obstruction is the main problem: favor radiotherapy—either EBRT short course (e.g., 20 Gy/5 or 30 Gy/10) or single-dose brachytherapy—for longer dysphagia relief and fewer adverse events vs stents. Modern reviews increasingly tilt toward short-course EBRT for ease/logistics with similar symptom control. PubMed+2Annals of Esophagus+2
- If rapid relief is essential (aspiration risk, severe weight loss, very limited life expectancy): fully
 covered SEMS palliates within hours; anticipate migration/chest pain and plan acid suppression and
 diet advancement. Thieme
- Combo strategies: Stent → EBRT can extend relief versus either alone in selected patients, but coordinate to minimize fistula risk and manage pain. PMC
- Do not place SEMS in a patient heading for curative nCRT or surgery unless absolutely necessary—stents can complicate resection and increase fistula/perforation risk during CRT. Refer early to radiation and nutrition. (Guideline caution echoed across ESMO/ESGE narratives.) Esge+1

F) Nutrition & symptom support (the quiet lifesavers)

- Early dietitian involvement; enteral feeding favored over TPN when possible. Consider NG/NJ or J-tube (often placed at esophagectomy) if weight loss or aspiration risks escalate.
- Pain, nausea, and cachexia: standard palliative regimens; engage palliative care at diagnosis of stage IV—this improves QoL and often treatment adherence.
- During IO: have a low threshold to evaluate immune-related AEs (esophagitis, hepatitis, colitis, endocrinopathies); treat promptly per oncology/IO guidelines.

G) Clipboard: practical first-line schemas

ESCC (unresectable/metastatic)

 Nivolumab + FP (5-FU/platinum); consider nivolumab + ipilimumab in selected patients (CheckMate-648). If chemo-ineligible or post-platinum, tislelizumab (US second-line approve) or other PD-1 options per region. FDA Access Data+1

Adenocarcinoma

- GEJ biology, HER2-neg → Pembrolizumab + platinum/fluoropyrimidine (KEYNOTE-859). Test
 CLDN18.2 early; if positive, consider zolbetuximab + chemo in the U.S. (2024). PubMed+1
- GEJ biology, HER2-pos (CPS ≥ 1) → Pembrolizumab + trastuzumab + chemo (standard approval 2025). If progression post-trastuzumab, consider trastuzumab deruxtecan (gastric/GEJ label). <u>U.S. Food and Drug Administration+1</u>
- Pure esophageal adenocarcinoma above the EGJ often lacks these GEJ-specific labels—confirm
 eligibility language before choosing regimen; many still use pembro + chemo via esophageal
 carcinoma labeling (KEYNOTE-590) when allowed. <u>U.S. Food and Drug Administration</u>

H) Pitfalls that burn time (and options)

- **Skipping PET/CT** before definitive therapy in a fit patient—missed M1 turns a curative plan into palliation. (Module 38.)
- Reflex stenting in potentially curable cases—can jeopardize surgery and raise fistula risk during CRT;
 talk to radiation early if dysphagia is severe. <u>Annals of Esophagus</u>
- Assuming IO always helps after definitive CRT—KEYNOTE-975/KUNLUN results are pending; outside trials, CRT alone remains standard. PMC
- Forgetting tumor-agnostic wins (MSI-H/dMMR, TMB-high)—small prevalence, big payoff. <u>U.S. Food</u>
 and Drug Administration.

I) 10-minute drills (mini-cases)

- 1. cT3N+ distal EAC (fit), MDT aims for cure
 - Choose peri-op FLOT pathway given ESOPEC signal; restage with PET/CT before surgery. If residual disease after CROSS path, adjuvant nivolumab—but here you didn't give CRT. The ASCO Post
- 2. Metastatic ESCC, CPS ≥ 10, good PS
 - Nivolumab + FP (or pembro + FP per label/center practice). If progression after platinum,
 tislelizumab is FDA-approved in the U.S. second line. <u>FDA Access Data+1</u>
- 3. GEJ adenocarcinoma, HER2-neg, CLDN18.2-pos
 - Zolbetuximab + CAPOX/FOLFOX first-line. If HER2-pos and CPS ≥ 1, use pembro + trastuzumab + chemo. U.S. Food and Drug Administration+1
- 4. Stage IV ESCC with severe dysphagia and weight loss
 - Place SEMS for rapid relief, start systemic therapy once stabilized; if life expectancy exceeds 3 months, consider short-course EBRT instead of (or after) stent for longer relief. <u>Annals of</u> Esophagus+1

One-page takeaway

- Resectable EAC: FLOT peri-op has beaten CROSS on OS in ESOPEC; adopt when fit, keep CROSS in the
 toolbox. Adjuvant nivolumab improves DFS after nCRT + surgery with residual disease. The ASCO
 Post+1
- Metastatic ESCC: Nivolumab + chemo (± ipilimumab) is a frontline standard; pembro + chemo is also active (KEYNOTE-590). Tislelizumab is a U.S.-approved second-line option (2024). FDA Access Data+ 2U.S. Food and Drug Administration+2
- GEJ adenocarcinoma: check HER2, CLDN18.2, PD-L1—they steer first line (pembro+chemo, pembro+trastuzumab+chemo, zolbetuximab+chemo). PubMed+2U.S. Food and Drug
 Administration+2
- Palliation: choose EBRT/brachy when survival is longer and you want durability; use SEMS for fast
 relief or short horizon; avoid routine stents in curative-intent pathways. Annals of Esophagus+1

Next — Module 40: Benign strictures masterclass (RBES).

We'll unify peptic, anastomotic, caustic, radiation, and EoE strictures into one durable dilation strategy—when to inject steroids, when to cut, when to stent, and when to teach self-dilation.

You said:

Next

ChatGPT said:

Request for GPT-5 Pro

Reasoned for 8m 11s

Module 40 — Benign esophageal strictures masterclass (RBES): build a program that actually lasts Strictures are physics problems wrapped in scar. Solve the physics (open the lumen), modulate the biology (acid/eosinophils/radiation damage), and pick your escalation lane early so you don't spend months playing whack-a-mole.

What you'll master

- Shared language for stricture complexity (simple vs complex) and RBES definitions (refractory vs recurrent). <u>British Society of Gastroenterology+1</u>
- A durable dilation protocol (balloon or bougie), the status of the "rule of three," target diameters, and when to use fluoroscopy. British Society of Gastroenterology
- Adjuncts that matter (intralesional steroid, incisional therapy) and those that are niche (mitomycin C): where they help and dosing that won't get you into trouble. PMC+2PMC+2
- Temporary stents without regrets (who, which, how long), self-dilation programs, and CARD (rendezvous) for complete occlusions. PMC+3Esge+3PMC+3
- Etiology-specific twists (peptic, EoE, anastomotic, radiation, caustic, post-ESD). <u>British Society of</u> Gastroenterology+2Medils+2

1) Taxonomy & shared definitions (clipboard)

- Simple vs complex (BSG): Simple = short <2 cm, concentric, straight, scope-passable (e.g., Schatzki, peptic); Complex = long ≥2 cm, angulated/irregular, very narrow or tortuous—tend to recur. British Society of Gastroenterology
- Refractory benign esophageal stricture (Kochman): failure to reach ≥14 mm after ≥5 dilations at ~
 2-week intervals. Recurrent: inability to maintain ≥14 mm for ≥4 weeks after achieving it. Use these to gate your escalation (steroid/incision/stent/self-dilation). PubMed

2) Baseline work-up & optimization

History/etiology matters: GERD (acid control), EoE (anti-inflammatory therapy), radiation (often long/multifocal), caustic (long, multiple; rule out malignancy in chronic cases), anastomotic (ischemia/tension). Document length, diameter, location, angulation. British Society of Gastroenterology

 Imaging/adjuncts: For high-risk/complex strictures (post-radiation, caustic, long or not endoscopically passable), plan fluoroscopic wire-guided dilation from the start. CO₂ insufflation preferred. British Society of Gastroenterology

3) Dilation that lasts (and doesn't perforate)

Tools: Either **wire-guided bougies** or **through-the-scope balloons**—no clinically meaningful difference in efficacy/safety; avoid *blind* Maloney bougies. <u>British Society of Gastroenterology</u> **How big, how fast?**

- Target diameter: aim >15-16 mm for symptom relief; many programs target 16-18 mm over one or several graded sessions. PMC+1
- "Rule of three," modern view: BSG notes the precise 3×1 mm restriction is not evidence-based; contemporary cohorts show no higher AE/perforation when you individualize increments (except be cautious in malignant strictures). Translation: go slow in tight/long lesions; you can go faster in easy ones. British Society of Gastroenterology+1
- Fluoroscopy: Use it for high-risk, long, angulated, multiple, post-radiation/caustic strictures; not routinely needed for simple rings/webs. British Society of Gastroenterology
- Aftercare: Observe ≥2 h; routine post-dilation imaging not needed unless pain/fever/tachycardia then CT with oral contrast. British Society of Gastroenterology

4) Etiology-specific add-ons (don't skip the biology)

- Peptic strictures: Long-term PPI; consider intralesional triamcinolone at refractory or inflamed segments to extend dilation intervals. PMC+1
- Eosinophilic esophagitis (EoE): Dilation is safe and effective (major complication rates <1% in modern series). Pair with disease-control (PPI, topical steroids, diet ± biologic) to prevent re-scar. Expect mucosal tears—often a marker of success, not a complication. Medils+1
- Anastomotic strictures: If recurrent after good-caliber dilations, move early to incisional therapy (radial stricturotomy) ± steroid—better durability than endless dilations in many series. PMC+1
- Radiation strictures: Often long/multifocal; plan wire-guided/fluoro dilations and involve SLP for swallow rehab. For complete occlusions, consider CARD (combined antegrade—retrograde rendezvous) in expert centers. British Society of Gastroenterology+1
- Caustic strictures: Expect long/multiple lesions; serial fluoroscopic dilations are the backbone. Some centers add topical mitomycin-C in RBES (see below) but data are heterogeneous; informed consent required. giejournal.org
- Post-ESD/EMR: For semi- or near-circumferential resections, prophylaxis with oral steroids or local triamcinolone reduces stricture formation and number of dilations; exact regimen varies (e.g., pred 30 mg/day with taper over 4–8 weeks). <u>PubMed+2PMC+2</u>

5) Adjunct therapies — what to use, when, and how

A) Intralesional steroid injection (triamcinolone)

When: RBES from peptic/anastomotic/short inflammatory strictures; also as **post-ESD** stricture prevention. **Effect:** Meta-analyses/controlled studies show longer symptom-free intervals and fewer dilations; benefit magnitude varies by etiology. <u>PMC+1</u>

How: Common practice—10 mg/mL triamcinolone, inject 0.5–1 mL aliquots circumferentially into the scar at and just proximal/distal to the stricture after achieving a visible mucosal split; typical total 40–80 mg per session. (Multiple regimens exist in the literature.) <u>Dove Medical Press</u>

B) Endoscopic incisional therapy (EIT / stricturotomy)

When: Short, fibrotic rings/webs and anastomotic strictures that recur after appropriate dilations. Effect: Reviews and cohorts show equivalent efficacy to dilation in naïve lesions and better long-term outcomes in refractory cases; perforation rates in experienced hands are low (≈0–3.5%). PMC+1 How: Needle-knife or IT-knife, make 2–4 radial cuts through the scar down to muscularis, then gentle dilation. Reserve for short segments; avoid in long, angulated, or inflamed segments.

C) Mitomycin-C (MMC) — niche, selective

When: Consider for refractory strictures (often caustic or pediatric) after failing steroid/incision; the adult evidence is mixed but systematic reviews suggest fewer dilations and symptom improvement in some cohorts. Use as an adjunct, with informed consent. giejournal.org

How: Topical application (e.g., pledgets soaked with MMC **0.4 mg/mL** for a few minutes) to the lacerated scar post-dilation; dosing varies across small studies—standardization is lacking. **Binasss**

6) Temporary stents — use sparingly, use well

- Not first-line for benign strictures; reserve for RBES after an adequate dilation/incision/steroid program. Prefer fully covered SEMS (easier/safer removal than partially covered). Esge
- Dwell time: plan ~6–8 weeks, with a max ≈12 weeks to reduce embedment; anchor or choose anti-migration designs as appropriate. Document a removal date at placement. Esge+1
- Biodegradable stents exist; data are evolving and mixed—consider within trials or in very select RBES scenarios. PMC

7) Self-dilation (DIY, but supervised)

For select motivated patients (proximal anastomotic, caustic, or radiation strictures), home bougienage can maintain patency and reduce procedures. Case series report high success (~90%) with few serious AEs when patients are trained and followed. Teach with soft Maloney dilators, clear diameter goals, and safety stop rules. Mayo Clinic+1

8) Complete luminal obstruction after radiation or surgery: CARD/rendezvous

When there's **no traversable lumen**, the **combined antegrade–retrograde** approach (via mouth and gastrostomy under fluoro) can restore continuity in ~80% of cases in experienced centers; expect staged dilations afterward. Refer to centers with two-endoscopist setups and IR/ENT backup. <u>PMC</u>

9) Pitfalls & board-style traps

- Endless small dilations without addressing acid/EoE or offering incision/steroid—that's how RBES is born. <u>British Society of Gastroenterology+1</u>
- Treating a short, fibrotic anastomotic ring with the 7th dilation instead of incisional therapy durability often suffers. PMC
- Stenting as first reflex for benign strictures—don't; and when you stent, document the removal date (6–8 weeks typical). <u>Esge</u>
- Blind Maloney in a tortuous/radiation stricture—use wire-guided/balloon under vision/fluoro.
 British Society of Gastroenterology
- Calling mucosal tears a "complication" of EoE dilation—often they're the intended effect of breaking
 the fibrotic ring; the perforation risk is low when done properly. PubMed

10) 10-minute drills (mini-cases)

- 1. Peptic stricture, 12 mm lumen, 2 cm long; recurs q3 months
 - Dilate to 16–18 mm over 1–2 sessions; optimize PPI; at next session, inject triamcinolone (≈ 40–80 mg total) into split scar to prolong remission. PMC+1
- 2. Short anastomotic stricture post-esophagectomy; 3 relapses
 - Incisional therapy (2–4 radial cuts) ± gentle dilation; consider steroid if inflamed. Avoid serial endless dilations. PMC
- 3. Long radiation stricture, angulated, 6 mm lumen
 - Wire-guided fluoroscopic balloon program over several sessions; engage SLP; if complete occlusion develops, refer for CARD/rendezvous. British Society of Gastroenterology+1
- 4. Diffuse narrow-caliber EoE; severe solid dysphagia
 - Start/optimize **anti-inflammatory EoE therapy**; **graded balloon/bougie dilations** to 16–18 mm over multiple sessions as needed; counsel on **post-dilation chest pain** and very low perforation risk. **Medils**
- 5. RBES (peptic/anastomotic) after 6 good dilations
 - Offer **FC-SEMS 6–8 weeks** with anti-migration strategy; remove by week 12 latest and reassess lumen. If relapse, discuss **self-dilation** training. <u>Esge+1</u>
- 6. Near-circumferential ESCC ESD defect
 - Prophylaxis: pred 30 mg/day taper over 4–8 w or local triamcinolone protocol; plan on-demand EBD. <u>PubMed+1</u>

One-page takeaway

- Define & plan: Use BSG complexity and Kochman RBES criteria to set expectations and trigger escalation. <u>British Society of Gastroenterology+1</u>
- Dilation program: Balloons or bougies both fine; target >15–16 mm, individualize increments; "rule
 of three" isn't sacred; use fluoro for high-risk patterns. <u>British Society of Gastroenterology+1</u>
- Adjuncts that work: Steroid injection (40–80 mg triamcinolone total/session) and incisional therapy
 improve durability in the right lesions; MMC is a niche adjunct for select RBES. PMC+2PMC+2
- When to stent: Reserve FC-SEMS for RBES; pull at 6–8 weeks (≤12 weeks max). Write the removal
 date in your note. Esge+1
- If all else fails: Self-dilation keeps people eating; CARD reopens complete post-radiation or post-surgical occlusions in expert centers. Mayo Clinic+1

Next — Module 41: Functional & behavioral esophageal disorders

Functional heartburn, reflux hypersensitivity, functional chest pain, globus, rumination & supragastric belching—objective testing patterns, neuromodulators, behavioral therapy, and tidy referral scripts.

You said:

Next

ChatGPT said: Request for GPT-5 Pro

Reasoned for 7m 11s

Module 41 — Functional & behavioral esophageal disorders (DGBIs): measure the pattern, treat the brain-gut loop

When structure and acid aren't the villains, behavior and sensitivity usually are. The trick is to classify precisely (Rome IV), test only what helps decisions, and then lean on behavioral therapy and neuromodulators with intent.

What you'll master

- A fast map of Rome IV functional esophageal disorders—functional heartburn (FH), reflux hypersensitivity (RH), functional chest pain (FCP), globus, belching disorders (esp. supragastric belching, SGB), and rumination—and what must be excluded for each. Rome Foundation+1
- A minimal-waste diagnostic workflow: when to scope, when to do pH-impedance (off vs on PPI), when HRM (and post-prandial maneuvers) actually changes care. PMC
- Treatment that works: behavioral therapies (diaphragmatic breathing, CBT/biofeedback), when baclofen earns its place, and which neuromodulators to start first. Gastrojournal+1

A) Name the syndrome (Rome IV \rightarrow clinic translation)

- Functional heartburn (FH): retrosternal burning despite proper PPI with normal acid exposure and negative symptom association; GERD, EoE, and major motility disorders excluded. Think brain-gut pain processing, not acid. Gastrojournal
- Reflux hypersensitivity (RH): normal acid exposure but positive symptom association to reflux events. Procedures may help select patients; don't reflexively escalate PPIs. PMC
- Functional chest pain (FCP): non-cardiac chest pain after exclusion of GERD/EoE/major motility disorder—visceral hypersensitivity is the driver; neuromodulators are first-line. PMC
- Globus: persistent/intermittent "lump in throat" without dysphagia or pain; structural ENT causes
 and reflux complications excluded. Behavioral/speech therapy and low-dose neuromodulators can
 help. Rome Foundation+1
- Belching disorders:
 - Supragastric belching (SGB) = learned air influx into the esophagus, then immediate expulsion;
 absent in sleep; best diagnosed by impedance-pH. Behavioral therapy is primary. PMC
 - Gastric belching = venting of gastric air through LES relaxations; treat reflux contributors.
- Rumination syndrome: effortless, post-prandial regurgitation from abdominal pressurization; confirm with HRIM ± impedance (characteristic gastric pressure rise with proximal reflux).
 Diaphragmatic breathing with biofeedback is first-line. PMC+1

B) Diagnostic workflow (do the fewest tests that get you certainty)

- 1. Alarm screen + single good look
 - Alarm features or age-appropriate cancer risk → EGD (and biopsies if needed). Otherwise, start
 with a clean symptom history and proper PPI trial (4–8 weeks; escalate only once). PMC
- 2. If heartburn/regurgitation persists
 - Off-therapy reflux monitoring to phenotype: FH (normal AET & negative association) vs RH (normal AET & positive association) vs true GERD (abnormal AET). Choose wireless pH off PPI unless you already have proven GERD—then on-therapy pH-impedance may be useful for refractory symptoms. PMC
- 3. If chest pain dominates
 - Ensure a cardiac work-up is complete. Then EGD/biopsies as indicated → reflux monitoring (to rule RH/GERD) → HRM (exclude major motility disorder). If all negative → FCP. PMC
- 4. If belching/regurgitation is the main show
 - 24-h impedance-pH to document SGB (stereotyped proximal air inflow/expulsion) vs gastric belching and to unmask co-existing GERD. Consider HRIM with a meal when rumination is suspected. PMC+1
- 5. If globus
 - ENT nasolaryngoscopy to exclude local pathology; stop the testing carousel after a normal EGD/ENT exam. Treat as a DGBI. PMC

C) Treatment by phenotype (what actually helps)

1) Functional heartburn (FH)

- De-emphasize acid: once GERD is excluded, taper PPIs; routine anti-reflux procedures don't help.
 Gastrojournal
- First-line: neuromodulators (e.g., TCA such as amitriptyline 10–25 mg qhs; SSRI/SNRI alternatives) + psychological therapies (CBT/hypnotherapy), tailored to comorbid anxiety/hypervigilance.
 Gastrojournal+1

2) Reflux hypersensitivity (RH)

- Education: normal AET ≠ "nothing wrong"—you're sensitive to physiologic reflux.
- Therapy options: optimize PPI if acid correlation; consider baclofen (reduces transient LES relaxations) for regurgitation-predominant RH; anti-reflux procedures may benefit selected RH patients with strong symptom association—choose carefully. PMC+1

2) Functional chart nain (ECD)

oj i unicuonai chest pani (i cr j

• Cornerstone: neuromodulators (TCAs low dose; SSRIs/SNRIs; gabapentinoids) with gradual titration and expectation setting. Evidence supports meaningful pain reduction vs placebo; class choice is individualized. Pair with CBT when hypervigilance is high. PMC+1

4) Supragastric belching (SGB)

- First-line = behavior: psychoeducation + diaphragmatic breathing training (often 4–5 sessions) ±
 CBT/biofeedback. Randomized data show significant reductions in belch frequency and distress. PPIs don't fix a learned motor pattern. PubMed+1
- Second-line: baclofen can reduce belching in some, but side-effects limit routine use—reserve for
 refractory cases with documented benefit. Follow AGA CPU on belching for nuance. <u>Gastrojournal</u>

5) Rumination syndrome

- **First-line = diaphragmatic breathing with biofeedback**, taught around meals to blunt **abdominal pressurization**; this has the best evidence and mechanistic plausibility. Add **CBT** for habit reversal and comorbidity. CGH Journal+1
- Adjuncts: short-term PPI if esophagitis, nutrition support if weight loss, speech-language therapy if
 co-existent oropharyngeal discoordination. (Meds are secondary here.) <u>CGH Journal</u>

6) Globus

Reassurance + targeted therapy: after normal ENT/EGD, consider speech/voice therapy (relaxes pharyngeal tension) and low-dose amitriptyline or an SSRI for bothersome symptoms; small RCTs support amitriptyline benefit. Keep PPIs short unless proven reflux. PMC+1

D) Clipboard algorithms (ready to run)

Heartburn on PPI, normal testing → FH

- 1. Confirm proper PPI use; perform off-therapy pH if not done.
- If FH, de-prescribe PPI, start low-dose TCA (or SSRI/SNRI) + CBT/hypnotherapy. Reassure—it's real, but not acid-driven. Gastrojournal

Regurgitation/belching

- 1. Impedance-pH → SGB pattern? → Diaphragmatic breathing ± CBT (4–5 sessions).
- If gastric belching/GERD, treat reflux; consider baclofen for troublesome regurgitation. Gastrojournal+1

Post-prandial "food coming back up"

- 1. HRIM with a meal → rumination (gastric pressurization + proximal reflux).
- Teach diaphragmatic breathing with biofeedback; add CBT. Short PPI if esophagitis present. <u>CGH Journal</u>

Noncardiac chest pain

- 1. Rule out cardiac; do EGD/biopsies, pH-impedance, HRM.
- If FCP, start neuromodulator (e.g., amitriptyline 10–25 mg qhs or SSRI/SNRI) + CBT; set expectations (weeks to benefit). PMC

Globus

- 1. ENT laryngoscopy ± EGD once.
- 2. Speech therapy ± low-dose amitriptyline/SSRI if bothersome; avoid test spirals. PMC+1

E) Doses & practical tips (starter set)

- Amitriptyline 10–25 mg qhs, titrate by 10–25 mg every 1–2 weeks to effect; watch anticholinergic
 effects. (Good for FH, FCP, globus.) <u>Gastrojournal</u>
- SSRI/SNRI (e.g., escitalopram 5–10 mg qd, sertraline 25–50 mg qd, venlafaxine XR 37.5–75 mg qd)
 when mood/anxiety or TCA intolerance dominates. <u>Gastrojournal</u>
- Baclofen 5–10 mg TID (avoid at night initially), reassess after 1–2 weeks; keep if objective reduction in belching/regurgitation and side-effects acceptable. PMC
- Behavioral therapy cadence: most SGB/rumination programs use 4–5 sessions over 6–8 weeks with homework; reinforce with follow-ups. RCTs show durable benefit at ~6 months. <u>PubMed</u>

F) Numbers & patterns worth memorizing

- **FH** requires **normal acid exposure** with **negative symptom association after** an adequate PPI trial; don't brand FH without measuring. <u>Gastrojournal</u>
- SGB is diagnosed by impedance-pH; events are absent in sleep and reduce with distraction—classic behavioral fingerprints. PMC
- Rumination on HRIM: post-prandial rises in intragastric pressure (often ≥30 mmHg in adults) with proximal flow; diaphragmatic breathing acutely blunts this pattern. PubMed
- Anti-reflux procedures: ACG cautions they're for persistent abnormal acid reflux and sometimes RH—not for FH. PMC

G) Pitfalls (that turn weeks into months)

- Escalating PPIs forever in FH/SGB/rumination—you're treating the wrong physics. Prove GERD before lifelong acid suppression. PMC
- Calling SGB "gas bloat" without impedance—misses the behavioral cure. PMC
- Skinning FNT in globus—one clean larvngosconv prevents endless referrals and scans PMC

Companie Tita in Bloods one decrease in 1,1800000 by breatenes charles referred and source into

 Neuromodulator abandonment after 1 week—set expectations (benefit in 2–6 weeks) and titrate slowly. Gastrojournal

H) 10-minute drills (mini-cases)

- 1. Daily belching, worst when anxious; normal EGD/pH.
 - Impedance-pH shows SGB → 5-session diaphragmatic breathing + CBT; consider baclofen only if partial responder. PubMed+1
- 2. Heartburn on BID PPI; wireless pH (off) AET 2.1%, no symptom association.
 - FH → taper PPI; start amitriptyline 10 mg qhs and CBT; review in 6–8 weeks. Gastrojournal
- 3. Post-meal effortless regurgitation; HRIM: gastric pressurization with proximal flow.
 - Rumination → diaphragmatic breathing with biofeedback; brief PPI if esophagitis; dietitian for weight loss. CGH Journal
- 4. Noncardiac chest pain; EGD/pH/HRM normal.
 - FCP \rightarrow SNRI (e.g., venlafaxine XR 37.5–75 mg) or TCA; pair with CBT; reassure about prognosis. PMC
- 5. "Lump in throat," normal ENT & EGD.
 - Globus → speech therapy + low-dose amitriptyline; avoid repeat testing unless red flags emerge.
 PMC+1

One-page takeaway

- Classify first (Rome IV), then test sparingly: off-therapy pH-monitoring to separate FH vs RH vs GERD; impedance-pH/HRIM for SGB/rumination; ENT once for globus. Rome Foundation+1
- · Therapy is mostly behavioral and neuro-modulatory:
 - FH/FCP → neuromodulators + CBT; avoid procedures. Gastrojournal+1
 - SGB → diaphragmatic breathing ± CBT (randomized data); baclofen is a selective adjunct. PubMed
 - Rumination → diaphragmatic breathing with biofeedback; meds are bit players. CGH Journal
 - Globus → speech therapy ± low-dose amitriptyline/SSRI after normal ENT/EGD. PMC+1
- Procedures are for proven abnormal acid reflux (and select RH)—never for FH. PMC

That caps our esophageal chapter. If helpful, I can bundle the whole series into a single **board-style "spine card"** (one-page per module) or spin out a **Q-bank** with 5–10 vignettes per topic to lock this in.