
32 COMMUNICATIONS OF THE ACM | AUGUST 2016 | VOL. 59 | NO. 8

practice
DOI:10.1145/2909480

 �Article development led by
queue.acm.org

ShiViz is a new distributed system
debugging visualization tool.

BY IVAN BESCHASTNIKH, PATTY WANG,
YURIY BRUN, AND MICHAEL D. ERNST

DISTRIBUTED SYSTEMS POSE unique challenges for
software developers. Reasoning about concurrent
activities of system nodes and even understanding the
system’s communication topology can be difficult.
A standard approach to gaining insight into system
activity is to analyze system logs. Unfortunately, this can
be a tedious and complex process. This article looks
at several key features and debugging challenges that
differentiate distributed systems from other kinds of
software. The article presents several promising tools
and ongoing research to help resolve these challenges.

Distributed systems differ from single-machine
programs in ways that are simultaneously positive
in providing systems with special capabilities, and
negative in presenting software-development and
operational challenges.

Heterogeneity. A distributed sys-
tem’s nodes may include mobile
phones, laptops, server-class ma-
chines, and more. This hardware and
software diversity in node resources
and network connectivity can make a
distributed system more robust, but
this heterogeneity forces developers
to manage compatibility during both
development and debugging.

Concurrency. Simultaneous op-
eration by multiple nodes leads to
concurrency, which can make a dis-
tributed system outperform a cen-
tralized system. However, concur-

Debugging
Distributed
Systems

http://dx.doi.org/10.1145/2909480
http://crossmark.crossref.org/dialog/?doi=10.1145%2F2909480&domain=pdf&date_stamp=2016-07-22

AUGUST 2016 | VOL. 59 | NO. 8 | COMMUNICATIONS OF THE ACM 33

I
M

A
G

E
 F

R
O

M
 S

H
U

T
T

E
R

S
T

O
C

K
.C

O
M

rency may introduce race conditions
and deadlocks, which are notorious-
ly difficult to diagnose and debug.
Additionally, networks introduce
packet delay and loss, exacerbating
the issues of understanding and de-
bugging concurrency.

Distributing state. Distributing
system state across multiple nodes
can remove a central point of failure
and improve scalability, but distrib-
uted state requires intricate node
coordination to synchronize state
across nodes—for example, nodes
must ensure their local states are

consistent. Potential inconsistencies
are prevented by distributed algo-
rithms, such as those that guarantee
a particular flavor of data consisten-
cy and cache coherence. Developers
may find it difficult, or even impossi-
ble, to reconstruct the global state of
the system when it is distributed on
many nodes. This complicates bug
diagnosis and validation.

Partial failures. The distribution
of state and responsibility allows dis-
tributed systems to be robust and sur-
vive a variety of failures. For example,
Google’s Spanner system can survive

failures of entire data centers.2 Achiev-
ing such fault tolerance, however, re-
quires developers to reason through
complex failure modes. For most dis-
tributed systems, fault tolerance can-
not be an afterthought; the systems
must be designed to deal with failures.
Such failure resiliency is complex to
design and difficult to test.

Existing Approaches
What follows is an overview of seven
approaches designed to help software
engineers validate and debug distrib-
uted systems.

34 COMMUNICATIONS OF THE ACM | AUGUST 2016 | VOL. 59 | NO. 8

practice

because it focuses on a specific subset
of the data, but it requires instrument-
ing applications and protocols to prop-
erly forward, without consuming, the
tracing metadata.

Log analysis is an even lighter-weight
approach that works with systems that
cannot be modified. It is a common
black-box approach in which a system’s
console logs, debug logs, and other log
sources are used to understand the sys-
tem. For example, Xu et al. applied ma-
chine learning to logs to detect anoma-
lies in Google infrastructure services.17
Detailed logs from realistic systems
contain a great deal of valuable detail,
but they tend to be so large that they are
overwhelming to programmers, who as a
result cannot directly benefit from them.

Visualization. The complexity of dis-
tributed systems has inspired work on
visualization of such systems to make
them more transparent to developers.
For example, Theia displays a visual sig-
nature that summarizes various aspects
of a Hadoop execution, such as the exe-
cution’s resource utilization.3 These sig-
natures can be used to spot anomalies
and to compare executions. Tools such
as Theia provide high-level summaries
of a system’s behavior. They do not,
however, help a developer understand
the underlying communication pattern
in the system, including the distributed
ordering of messages.

Visualizing Distributed-System
Executions
As noted earlier, the ability to visualize
distributed-system executions can
help developers understand and de-
bug their distributed systems. ShiViz
is such a visualization tool, display-
ing distributed-system executions as
interactive time-space diagrams that
explicitly capture distributed ordering
of messages and events in the system.
This diagram reproduces the events
and interactions captured in the ex-
ecution log, making the ordering in-
formation explicit through a concise
visualization. A developer can expand,
collapse, and hide parts of the dia-
gram, as well as search for particular
interaction patterns. ShiViz is freely
available as a browser application; any
developer can visualize a log, without
installing software or sending the log
over the network.

To provide a rich and accurate visu-

Testing. A test suite exercises a spe-
cific set of executions to ensure that they
behave properly. Most testing of dis-
tributed systems is done using manu-
ally written tests, typically introduced
in response to failures and then mini-
mized.14 Testing is an effective way to de-
tect errors. However, since testing exer-
cises a limited number of executions, it
can never guarantee to reveal all errors.

Model checking is exhaustive testing,
typically up to a certain bound (number
of messages or steps in an execution).
Symbolic model checking represents
and explores possible executions math-
ematically; explicit-state model check-
ing is more practical because it actually
runs the program, controlling its execu-
tions rather than attempting to abstract
it. MoDist performs black-box model
checking, permuting message sequenc-
es and changing the execution speed
of a process relative to other processes
in the system.18 MaceMC is a white-box
technique that achieves speedups by
adding programming-language sup-
port for model checking.7 Common
problems of all model-checking tools
are scalability and environmental mod-
eling, so they rarely achieve a guarantee.

Theorem proving can, in principle,
prove a distributed system to be free of
defects. Amazon uses TLA+ to verify its
distributed systems.11 Two recent sys-
tems can construct a verified distribut-
ed-system implementation. Verdi uses
the Coq tool, whose expressive type sys-
tem makes type checking equivalent to
theorem proving, thanks to the Curry-

Howard isomorphism; the Coq specifi-
cation is then compiled into an OCaml
implementation of the distributed sys-
tem.16 In contrast, IronFleet uses TLA
and Hoare-logic verification to similarly
produce a verified implementation of
a distributed system.5 The enormous
effort needed to use these tools makes
them most appropriate for new imple-
mentations of small, critical cores. Oth-
er techniques are needed for existing
distributed systems.

Record and replay captures a single
execution of the system so that this
execution can be later replayed or ana-
lyzed. This is especially useful when de-
bugging nondeterministic behaviors. A
record-and-replay tool such as Friday4
or D3S8 captures all nondeterministic
events so that an execution can be re-
produced exactly. Recording a complex
execution, however, may be prohibitive-
ly expensive and may change the behav-
ior of the underlying system.

Tracing tracks the flow of data
through a system, even across applica-
tions and protocols such as a database,
Web server, domain-name server, load
balancer, or virtual private network
protocol.13 For example, pivot tracing
dynamically instruments Java-based
systems to collect user-defined metrics
at different points in the system and col-
lates the resulting data to provide an in-
ter-component view of the metrics over
multiple executions.9 Dapper is a lower-
level tracing system used at Google to
trace infrastructure services.15 Tracing
is more efficient than record and replay

A typical distributed-system log does not contain enough information to regenerate
the happens-before relation, and this is one reason that distributed-system logs are
so hard to interpret. ShiViz relies on logs that have been enhanced by another tool,
ShiVector, to include vector clock timestamps that capture the happens-before relation
between events.10 Each node α maintains a vector of logical clocks, one clock for each
node in the distributed system, including itself. α’s ith clock is a lower bound on the
current logical time at node i. The node α increments the αth component of its vector
clock each time it performs a local action or sends or receives a message. Each message
contains the sending node’s current vector clock; upon message receipt, the receiving
node updates its vector clock to the elementwise maximum of its local and received
timestamps.

ShiVector is a lightweight instrumentation tool that augments the information
already logged by a distributed system with the partial ordering information encoded
as vector clocks. ShiVector interposes on communication and logging channels at each
node in the system to add vector clock timestamps to every logged event.

ShiViz parses ShiVector-augmented logs to determine, for each event: the node
that executed the event; the vector timestamp of the event; and the event’s description.
ShiViz permits a user to customize the parsing of logs using regular expressions, which
can be used to associate additional information, or fields, with each event.

Distributed Timestamps

AUGUST 2016 | VOL. 59 | NO. 8 | COMMUNICATIONS OF THE ACM 35

practice

alization of a distributed system’s ex-
ecution, ShiViz displays the happens-
before relation. Given event e at node n,
the happens-before relation indicates
all the events that logically precede e.
Other events might have already oc-
curred at other nodes according to
wall-clock time, but node n cannot tell
whether those other events happened
before or after e, and they do not affect
the behavior of e. This partial order
can rule out which events do not cause
others, identify concurrent events,
and help developers mentally replay
parts of the execution.

Figure 1 illustrates an execution of
the two-phase commit protocol with
one transaction manager and two rep-
licas.1 This time-space diagram is a
visualization of the underlying hap-
pens-before partial order, showing an
execution with three nodes. Lines with
arrows denote the partial ordering of
events, each of which has an associated
vector timestamp in brackets. (See the
accompanying sidebar on timestamps.)

Figure 2 shows a screenshot of
ShiViz visualizing an execution of a
distributed data-store system called
Voldemort.12 In the middle of the
screen is the time-space diagram,
with time flowing from top to bottom.

The colored boxes at the top represent
nodes, and the vertical lines below
them are the node timelines. Circles
on each node’s timeline represent
events executed by that node. Edges
connect events, representing the re-
corded happens-before relation: an
event that is higher in the graph hap-
pened before an event positioned
lower in the graph that it is connected
to via a downward path. ShiViz aug-
ments the time-space diagram with
operations to help developers explore

distributed-system executions and
corresponding logs. Figure 2 details
some of these operations.

Understanding Distributed-System
Executions
ShiViz helps developers to understand
the relative ordering of events and
the likely chains of causality between
events, which is important for debug-
ging concurrent behavior; to query for
certain events and interaction patterns
between hosts; and to identify structur-

Figure 1. Time-space diagram of an execution with three nodes.

abort
[1,1,0)

tx aborted
[2,4,1)

replica 1

tx prepare
[0,1,0)

tx abort
[1,4,1)

r1 abort
[1,3,1)

r2 commit
[0,2,1)

tx manager

commit
[0,1,1)

tx aborted
[1,4,2)

replica 2

Figure 2. A ShiViz screenshot.

792 12

2

2

Closed, exiting

date: 2013-05-24 23:28:01,863

path: voldemort.store.socket.clientrequest.ClientRequestExecutorFactory$ClientRequestSelectorManager

priority: INFO

host: nio-client1

Hidden processes:

Closed, exiting

date: 2013-05-24 23:2
8:01,863

path: voldemort.store.s
ocket.clientreque
st.ClientRequest
ExecutorFactory
$ClientRequestS
electorManager

priority: INFO
host: nio-client1

Protocol negotiated for Socket[addr=/127.0.0.1,port=64151,localport=64146]: voldemort-native-v1
792 collapsed events
12 collapsed events

Protocol negotiated for Socket[addr=/127.0.0.1,port=64152,localport=64149]: voldemort-native-v1
Protocol negotiated for Socket[addr=/127.0.0.1,port=64153,localport=64146]: voldemort-native-v1

Protocol negotiated for Socket[addr=/127.0.0.1,port=64154,localport=64149]: voldemort-native-v1
2 collapsed events

Closed, exiting

Protocol negotiated for Socket[addr=/127.0.0.1,port=64161,localport=64156]: voldemort-native-v1

Protocol negotiated for Socket[addr=/127.0.0.1,port=64162,localport=64159]: voldemort-native-v1
Protocol negotiated for Socket[addr=/127.0.0.1,port=64163,localport=64156]: voldemort-native-v1

Protocol negotiated for Socket[addr=/127.0.0.1,port=64164,localport=64159]: voldemort-native-v1
2 collapsed events

Closed, exiting
Closed, exiting

Protocol negotiated for Socket[addr=/127.0.0.1,port=64171,localport=64166]: voldemort-native-v1

Protocol negotiated for Socket[addr=/127.0.0.1,port=64172,localport=64169]: voldemort-native-v1
Protocol negotiated for Socket[addr=/127.0.0.1,port=64173,localport=64166]: voldemort-native-v1

279 Closed, exiting

Log lines Motifs

Search the visualization

Clicking on an event
displays its details in
a popup and
highlights the
relevant log line in
the left panel.

Boxes represent nodes in the system; the box
colors provide a consistent coloring for events
and log lines associated with a node.

Each circle represents an
event on a node timeline.

Local events with no
intermediate communication
can be collapsed into a larger
circle labeled with the number
of collapsed events.

ShiViz supports searching the time-space
diagram by keywords and by structure.

Hovering over an event
displays its details.

The user can click on a node to hide it and its
log lines from the visualization. Hidden nodes
can be restored with a double click.

ShiViz display log lines that correspond to the
currently visible time-space diagram to the right.

36 COMMUNICATIONS OF THE ACM | AUGUST 2016 | VOL. 59 | NO. 8

practice

A user can also compose a cus-
tom pattern consisting of nodes, node
events, and connections between events
representing a partial order. Figure 3
shows such a custom pattern, depicting
three nodes communicating in a ring:
node 1 communicates only with node
2; node 2 with node 3; and node 3 with
node 1. Drawing this pattern allows the
user to search for all instances of this
three-node ring communication in the
execution. ShiViz automatically trans-
lates the drawn pattern into a textual
representation (see search bar at the
top), and it is possible to edit, copy, and
paste the textual representation direct-
ly. The structured search feature allows
users to express custom communica-
tion patterns between events and to
query an execution for instances of the
specified pattern. The presence or ab-
sence of queried subgraphs at particu-
lar points in an execution can help us-
ers detect anomalous behavior, aiding
them in their debugging efforts.

Comparing executions. ShiViz can
help users understand multiple execu-
tions of a system. When ShiViz parses
multiple executions, the user can
choose between viewing executions in-
dividually or pairwise.

In the pairwise view, a user can
compare the two executions further
by highlighting their differences.
When enabled, the nodes are com-
pared by name. For nodes present in
both executions, ShiViz compares
their events one by one by comparing
the corresponding event descriptions.
Nodes or events in one execution that
do not appear in the other are redrawn
as rhombuses.

Figure 4 illustrates this pairwise
comparison on a log of the two-phase
commit protocol. The two selected
events in the figure explain the differ-
ence between these two executions:
the two-phase commit successfully
commits a transaction in the left exe-
cution, but aborts a transaction in the
right execution.

The explicit highlighting of differ-
ences provides users with fast detec-
tion of anomalous events or points
where the two executions diverge. The
search features described earlier can
be applied in the pairwise view to help
developers detect specific unifying or
distinguishing features across traces,
allowing them to design and test their

al similarities and differences between
pairs and groups of executions. The
time-space diagram representation sup-
ports the first goal by visualizing event
ordering and communication. The next
section describes two search operations
that support the second goal, and op-
erations over multiple executions that
correspond to the third goal.

Keyword search and structured
search operations. ShiViz implements
two kinds of search operations: key-
word and structured. Both types are
accessible to the developer through the
top search bar (see Figure 2).

Keyword search allows a developer to
highlight all events in the diagram that
contain a field matching a query. For
example, searching for send will high-
light all events in the diagram that have
a field whose value is send. The results

can be further constrained with field
identifiers and regular expressions. For
example, the query node=alice &&
priority=CRITICAL* will highlight
only events at the alice node with a
priority field matching the regular ex-
pression CRITICAL*.

In a structured search, a user que-
ries ShiViz for any set of events related
through a particular ordering pattern,
and ShiViz highlights the sections of the
diagram (events and their interconnec-
tions) that match this pattern. ShiViz in-
cludes several predefined patterns:

˲˲ Request-response. A source node
sends a request and the destination
node sends back a response.

˲˲ Broadcast. A node sends a message
to most other nodes in the system.

˲˲ Gather. A node receives a message
from most other nodes.

Figure 3. Structured search feature.

Sending SLDeliver(Data

Message(1,Message1)) t

o node1

date: 10/13/2014

14:37:20.550

host: node0

Initiating RBBroadcast(DataMessage(1,Message1))

Sending SLDeliver(DataMessage(1,Message1)) to node1

Sending SLDeliver(DataMessage(1,Message1)) to node2
Received SLDeliver(DataMessage(1,Message1)) from node0

Sending ACK(1) to node0
Received SLDeliver(DataMessage(1,Message1)) from node0

Received ACK(1) from node1
RBDeliver of message DataMessage(1,Message1) from node0
Sending ACK(1) to node0

Sending SLDeliver(DataMessage(1,Message1)) to node0
RBDeliver of message DataMessage(1,Message1) from node0

Received SLDeliver(DataMessage(1,Message1)) from node1
Sending SLDeliver(DataMessage(1,Message1)) to node2
Sending SLDeliver(DataMessage(1,Message1)) to node0

Sending ACK(1) to node1
Sending SLDeliver(DataMessage(1,Message1)) to node1

RBDeliver of message DataMessage(1,Message1) from node1
Received SLDeliver(DataMessage(1,Message1)) from node2
Received SLDeliver(DataMessage(1,Message1)) from node1

Sending SLDeliver(DataMessage(1,Message1)) to node1
Sending ACK(1) to node2
Sending ACK(1) to node1

Sending SLDeliver(DataMessage(1,Message1)) to node2
Received ACK(1) from node2
Received ACK(1) from node1

Received ACK(1) from node2
Received ACK(1) from node0
Received SLDeliver(DataMessage(1,Message1)) from node0

Received SLDeliver(DataMessage(1,Message1)) from node2
Received SLDeliver(DataMessage(1,Message1)) from node0
Sending ACK(1) to node0

Sending ACK(1) to node2
Sending ACK(1) to node0

Received ACK(1) from node1
Handle Tick()
Received ACK(1) from node0

Received ACK(1) from node2
Handle Tick()

Handle Tick()

Log lines Motifs

#structure=[{"host":"a","clock":{"a":1}},{"host":"a","clock":{"a":2,"c":1,"b":1}},{"host":"b","clock":{"b":1,"a":1}},{"host":"c","clock":{"c":1,"b":1,"a":1}}]

Structured Search

Search for a custom structure: draw a graph

structure below (add processes, events, click

and drag to add inter-event edges).

Search for a pre-defined structure:
Select one of the options below to

find the specified structure.

Text Search

+

Figure 4. The two-phase commit protocol executions.

tx-commit

host: replica2

tx-propose-send

tx-propose-send
tx-propose-recvd

tx-commit
tx-propose-recvd

tx-commit-recvd

tx-commit-recvd

tx-committed-send

tx-committed-send
tx-committed-recvd

tx-committed-recvd

tx-propose-send

tx-propose-send
tx-propose-recvd

tx-commit
tx-propose-recvd

tx-commit-recvd
tx-abort

tx-abort-recvd

tx-aborted-send

tx-aborted-send
tx-aborted-recvd

tx-aborted-recvd

12 tx-commit

Log lines

2PC-TX-Aborted

Search the visualization

tx-abort

host: replica2

tx-propose-send

tx-propose-send
tx-propose-recvd

tx-commit
tx-propose-recvd

tx-commit-recvd
tx-commit

tx-commit-recvd

tx-committed-send

tx-committed-send
tx-committed-recvd

tx-committed-recvd

tx-propose-send

tx-propose-send
tx-propose-recvd

tx-commit
tx-propose-recvd

tx-commit-recvd

tx-abort-recvd

tx-aborted-send

tx-aborted-send
tx-aborted-recvd

tx-aborted-recvd

12 tx-abort

Log lines

2PC-TX-Aborted

Search the visualization

AUGUST 2016 | VOL. 59 | NO. 8 | COMMUNICATIONS OF THE ACM 37

practice

systems more effectively.
Clustering executions. To help

manage many executions, ShiViz sup-
ports grouping executions into clus-
ters. A user can cluster by the num-
ber of nodes or by comparison to a
base execution, using as a distance
metric the differencing mechanism
described earlier. Cluster results are
presented as distinct groups of listed
execution names.

Execution clusters aid in the inspec-
tion and comparison of multiple ex-
ecutions by providing an overview of all
executions at once. Users can quickly
scan through cluster results to see
how executions are alike or different,
based on the groups into which they
are sorted. Clustering also helps users
pinpoint executions of interest by al-
lowing them to inspect a subset of ex-
ecutions matching a desired measure.
This subset can be further narrowed
by performing a keyword search or a
structured search on top of the cluster-
ing results. Execution names among
clusters are highlighted if their cor-
responding graphs contain instances
matching the user’s search query.

ShiViz helps developers visualize the
event order, search for communication
patterns, and identify potential event
causality. This can help developers rea-
son about the concurrency of events in
an execution, distributed system state,
and distributed failure modes, as well
as formulate hypotheses about system
behavior and verify them via execution
visualizations. Meanwhile, the gener-
ality of logging makes ShiVector and
ShiViz broadly applicable to systems
deployed on a wide range of devices.

ShiViz has some limitations. ShiViz
surfaces low-level ordering informa-
tion, which makes it a poor choice
for understanding high-level system
behavior. The ShiViz visualization is
based on logical and not realtime or-
dering, and cannot be used to study cer-
tain performance characteristics. The
ShiViz tool is implemented as a client-
side-only browser application, making
it portable and appropriate for ana-
lyzing sensitive log data. This design
choice, however, also limits its scalabil-
ity. A related and complementary tool
to ShiViz is Ravel, which can scalably
visualize parallel execution traces.6

ShiViz is an open source tool with an
online deployment (http://bestchai.bit-

bucket.org/shiviz/). Watch a video dem-
onstrating key ShiViz features at http://
bestchai.bitbucket.org/shiviz-demo/.

Acknowledgments 
We thank Perry Liu and Albert Xing,
who helped develop ShiViz; Jenny
Abrahamson, who developed the ini-
tial ShiVector and ShiViz prototypes;
and Donald Acton and Colin Scott, who
helped evaluate ShiViz. This work is
supported by NSERC USRA, the NSERC
Discovery grant, and the National Sci-
ence Foundation under grants CCF-
1453474 and CNS-1513055. This ma-
terial is based on research sponsored
by DARPA under agreement number
FA8750-12-2-0107. The U.S. govern-
ment is authorized to reproduce and
distribute reprints for governmental
purposes, notwithstanding any copy-
right notices thereon.	

 Related articles
 on queue.acm.org

Advances and Challenges in Log Analysis
Adam Oliner, Archana Ganapathi, and Wei Xu
http://queue.acm.org/detail.cfm?id=2082137

Leveraging Application Frameworks
Douglas C. Schmidt, Aniruddha Gokhale,
and Balachandran Natarajan
http://queue.acm.org/detail.cfm?id=1017005

Postmortem Debugging
in Dynamic Environments
David Pacheco
http://queue.acm.org/detail.cfm?id=2039361

References
1.	 Bernstein, P., Hadzilacos, V., Goodman, N. Distributed

recovery. Concurrency Control and Recovery in
Database Systems, Chapter 7. Addison-Wesley, 1986;
http://research.microsoft.com/en-us/people/philbe/
chapter7.pdf.

2.	 Corbett, J. C. et al. Spanner: Google’s globally
distributed database. In Proceedings of the 10th
Usenix Symposium on Operating Systems Design
and Implementation, 2012; https://www.usenix.org/
conference/osdi12/technical-sessions/presentation/
corbett.

3.	 Garduno, E., Kavulya, S. P., Tan, J., Gandhi, R.,
Narasimhan, P. Theia: Visual signatures for problem
diagnosis in large Hadoop clusters. In Proceedings of
the 26th International Conference on Large Installation
System Administration, 2012, 33–42; https://users.
ece.cmu.edu/~spertet/papers/hadoopvis-lisa12-
cameraready-v3.pdf.

4.	 Geels, D., Altekar, G., Maniatis, P., Roscoe, T., Stoica, I.
Friday: Global comprehension for distributed replay. In
Proceedings of the 4th Usenix Conference on Networked
Systems Design and Implementation, (2007); https://
www.usenix.org/legacy/event/nsdi07/tech/full_papers/
geels/geels.pdf.

5.	 Hawblitzel, C., Howell, J., Kapritsos, M., Lorch, J. R.,
Parno, B., Roberts, M. L., Setty, S., Zill, B. IronFleet:
Proving practical distributed systems correct. In
Proceedings of the 25th Symposium on Operating
Systems Principles; 2015; http://sigops.org/sosp/sosp15/
current/2015-Monterey/250-hawblitzel-online.pdf.

6.	 Isaacs, K.E. et al. Combing the communication hairball:
Visualizing parallel execution traces using logical time.
IEEE Transactions on Visualization and Computer
Graphics 20, 12 (Dec 2014), 2349–2358.

7.	 Killian, C., Anderson, J. W., Jhala, R., Vahdat, A. Life,
death, and the critical transition: Finding liveness
bugs in systems code. In Proceedings of the 4th
Usenix Conference on Networked Systems Design
and Implementation, (2007); https://www.usenix.org/
legacy/event/nsdi07/tech/killian/killian.pdf.

8.	 Liu, X., Guo, Z., Wang, X., Chen, F., Lian, X., Tang, J.,
Wu, M., Kaashoek, M. F., Zhang, Z. D3S: Debugging
deployed distributed systems. In Proceedings of
the 5th Usenix Symposium on Networked Systems
Design and Implementation, 2008; 423–437; http://
static.usenix.org/event/nsdi08/tech/full_papers/
liu_xuezheng/liu_xuezheng.pdf.

9.	 Mace, J., Roelke, R., Fonseca, R. Pivot tracing: Dynamic
causal monitoring for distributed systems. In Proceedings
of the 25th Symposium on Operating Systems Principles,
(2015); 378–393; http://sigops.org/sosp/sosp15/
current/2015-Monterey/122-mace-online.pdf.

10.	 Mattern, F. Virtual time and global states of distributed
systems. In Proceedings of the International
Workshop on Parallel and Distributed Algorithms, 1989;
http://homes.cs.washington.edu/~arvind/cs425/doc/
mattern89virtual.pdf

11.	 Newcombe, C., Rath, T., Zhang, F., Munteanu, B., Brooker,
M., Deardeuff, M. How Amazon Web Services uses
formal methods. Commun. ACM 58, 4 (2015), 66–73;
http://cacm.acm.org/magazines/2015/4/184701-how-
amazon-web-services-uses-formal-methods/fulltext.

12.	 Project Voldemort; http://www.project-voldemort.com/
voldemort/.

13.	 Sambasivan, R.R., Fonseca, R., Shafer, I., Ganger, G. So,
you want to trace your distributed system? Key design
insights from years of practical experience. Parallel
Data Laboratory, Carnegie Mellon University, 2014;
http://www.pdl.cmu.edu/PDL-FTP/SelfStar/CMU-
PDL-14-102.pdf.

14.	 Scott, C. et al. Minimize faulty executions of distributed
systems. In Proceedings of the 13th Usenix Symposium
on Networked Design and Implementation (Santa
Clara, CA, Mar. 16–18, 2016) 291–309.

15.	 Sigelman, B. H., Barroso, L. A., Burrows, M., Stephenson,
P., Plakal, M., Beaver, D., Jaspan, S., Shanbhag, C. Dapper,
a large-scale distributed systems tracing infrastructure.
Research at Google, 2010; http://research.google.com/
pubs/pub36356.html.

16.	 Wilcox, J. R., Woos, D., Panchekha, P., Tatlock, Z., Wang,
X., Ernst, M. D., Anderson, T. Verdi: A framework for
implementing and formally verifying distributed systems.
In Proceedings of the 36th SIGPLAN Conference on
Programming Language Design and Implementation,
2015, 357–368; https://homes.cs.washington.
edu/~ztatlock/pubs/verdi-wilcox-pldi15.pdf.

17.	 Xu, W., Huang, L., Fox, A., Patterson, D., Jordan, M.
Experience mining Google’s production console logs. In
Proceedings of the Workshop on Managing Systems via
Log Analysis and Machine Learning Techniques, 2010;
http://iiis.tsinghua.edu.cn/~weixu/files/slaml10.pdf.

18.	 Yang, J., et al. MoDist: Transparent model checking of
unmodified distributed systems. In Proceedings of the
6th Usenix Symposium on Networked Systems Design
and Implementation, 2009, 213–228; https://www.
usenix.org/legacy/event/nsdi09/tech/full_papers/yang/
yang_html/.

Ivan Beschastnikh (http://www.cs.ubc.ca/~bestchai/)
works on improving the design, implementation, and
operation of complex systems. He is an assistant
professor in the department of computer science at the
University of British Columbia, where he leads a team
of students on projects that span distributed systems,
software engineering, security, and networks, with a
particular focus on program analysis.

Patty Wang has explored approaches to helping
developers understand and compare multiple distributed
executions, focusing on summarizing similarities and
differences across traces.

Yuriy Brun (http://people.cs.umass.edu/~brun/) works on
automating system building and creating self-adaptive
systems. He is an assistant professor at the University of
Massachusetts, Amherst.

Michael D. Ernst (http://homes.cs.washington.edu/~mernst/)
researches ways to make software more reliable, more
secure, and easier to produce. His primary technical interests
are in software engineering, programming languages, type
theory, and security, among others.

Copyright held by authors.
Publication rights licensed to ACM. $15.00.

