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ShiViz is a new distributed system
debugging visualization tool.

BY IVAN BESCHASTNIKH, PATTY WANG,
YURIY BRUN, AND MICHAEL D. ERNST

Debugging
Distributed
Systems

DISTRIBUTED SYSTEMS POSE unique challenges for
software developers. Reasoning about concurrent
activities of system nodes and even understanding the
system’s communication topology can be difficult.
A standard approach to gaining insight into system
activity is to analyze system logs. Unfortunately, this can
be a tedious and complex process. This article looks
at several key features and debugging challenges that
differentiate distributed systems from other kinds of
software. The article presents several promising tools
and ongoing research to help resolve these challenges.
Distributed systems differ from single-machine
programs in ways that are simultaneously positive
in providing systems with special capabilities, and
negative in presenting software-development and
operational challenges.
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Heterogeneity. A distributed sys-
tem’s nodes may include mobile
phones, laptops, server-class ma-
chines, and more. This hardware and
software diversity in node resources
and network connectivity can make a
distributed system more robust, but
this heterogeneity forces developers
to manage compatibility during both
development and debugging.

Concurrency. Simultaneous op-
eration by multiple nodes leads to
concurrency, which can make a dis-
tributed system outperform a cen-
tralized system. However, concur-
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rency may introduce race conditions
and deadlocks, which are notorious-
ly difficult to diagnose and debug.

Additionally, networks introduce
packet delay and loss, exacerbating
the issues of understanding and de-
bugging concurrency.

Distributing state. Distributing
system state across multiple nodes
can remove a central point of failure
and improve scalability, but distrib-
uted state requires intricate node
coordination to synchronize state
across nodes—for example, nodes
must ensure their local states are

consistent. Potential inconsistencies
are prevented by distributed algo-
rithms, such as those that guarantee
a particular flavor of data consisten-
cy and cache coherence. Developers
may find it difficult, or even impossi-
ble, to reconstruct the global state of
the system when it is distributed on
many nodes. This complicates bug
diagnosis and validation.

Partial failures. The distribution
of state and responsibility allows dis-
tributed systems to be robust and sur-
vive a variety of failures. For example,
Google’s Spanner system can survive

failures of entire data centers.? Achiev-
ing such fault tolerance, however, re-
quires developers to reason through
complex failure modes. For most dis-
tributed systems, fault tolerance can-
not be an afterthought; the systems
must be designed to deal with failures.
Such failure resiliency is complex to
design and difficult to test.

Existing Approaches

What follows is an overview of seven
approaches designed to help software
engineers validate and debug distrib-
uted systems.
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Distributed Timestamps

A typical distributed-system log does not contain enough information to regenerate
the happens-before relation, and this is one reason that distributed-system logs are

so hard to interpret. ShiViz relies on logs that have been enhanced by another tool,
ShiVector, to include vector clock timestamps that capture the happens-before relation
between events.'” Each node o maintains a vector of logical clocks, one clock for each
node in the distributed system, including itself. o’s ith clock is a lower bound on the
current logical time at node i. The node o increments the ath component of its vector
clock each time it performs a local action or sends or receives a message. Each message
contains the sending node’s current vector clock; upon message receipt, the receiving
node updates its vector clock to the elementwise maximum of its local and received

timestamps.

ShiVector is a lightweight instrumentation tool that augments the information
already logged by a distributed system with the partial ordering information encoded
as vector clocks. ShiVector interposes on communication and logging channels at each
node in the system to add vector clock timestamps to every logged event.

ShiViz parses ShiVector-augmented logs to determine, for each event: the node
that executed the event; the vector timestamp of the event; and the event’s description.
ShiViz permits a user to customize the parsing of logs using regular expressions, which
can be used to associate additional information, or fields, with each event.

Testing. A test suite exercises a spe-
cific set of executions to ensure that they
behave properly. Most testing of dis-
tributed systems is done using manu-
ally written tests, typically introduced
in response to failures and then mini-
mized." Testing is an effective way to de-
tect errors. However, since testing exer-
cises a limited number of executions, it
can never guarantee to reveal all errors.

Model checkingis exhaustive testing,
typically up to a certain bound (number
of messages or steps in an execution).
Symbolic model checking represents
and explores possible executions math-
ematically; explicit-state model check-
ing is more practical because it actually
runs the program, controlling its execu-
tions rather than attempting to abstract
it. MoDist performs black-box model
checking, permuting message sequenc-
es and changing the execution speed
of a process relative to other processes
in the system.'® MaceMC is a white-box
technique that achieves speedups by
adding programming-language sup-
port for model checking.” Common
problems of all model-checking tools
are scalability and environmental mod-
eling, so they rarely achieve a guarantee.

Theorem proving can, in principle,
prove a distributed system to be free of
defects. Amazon uses TLA+ to verify its
distributed systems.!* Two recent sys-
tems can construct a verified distribut-
ed-system implementation. Verdi uses
the Coq tool, whose expressive type sys-
tem makes type checking equivalent to
theorem proving, thanks to the Curry-
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Howard isomorphism; the Coq specifi-
cation is then compiled into an OCaml
implementation of the distributed sys-
tem.'® In contrast, IronFleet uses TLA
and Hoare-logic verification to similarly
produce a verified implementation of
a distributed system.’ The enormous
effort needed to use these tools makes
them most appropriate for new imple-
mentations of small, critical cores. Oth-
er techniques are needed for existing
distributed systems.

Record and replay captures a single
execution of the system so that this
execution can be later replayed or ana-
lyzed. This is especially useful when de-
bugging nondeterministic behaviors. A
record-and-replay tool such as Friday’
or D3S® captures all nondeterministic
events so that an execution can be re-
produced exactly. Recording a complex
execution, however, may be prohibitive-
ly expensive and may change the behav-
ior of the underlying system.

Tracing tracks the flow of data
through a system, even across applica-
tions and protocols such as a database,
Web server, domain-name server, load
balancer, or virtual private network
protocol.® For example, pivot tracing
dynamically instruments Java-based
systems to collect user-defined metrics
atdifferent points in the system and col-
lates the resulting data to provide an in-
ter-component view of the metrics over
multiple executions.’ Dapper is a lower-
level tracing system used at Google to
trace infrastructure services.'® Tracing
is more efficient than record and replay
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because it focuses on a specific subset
of the data, but it requires instrument-
ing applications and protocols to prop-
erly forward, without consuming, the
tracing metadata.

Log analysis is an even lighter-weight
approach that works with systems that
cannot be modified. It is a common
black-box approach in which a system’s
console logs, debug logs, and other log
sources are used to understand the sys-
tem. For example, Xu et al. applied ma-
chine learning to logs to detect anoma-
lies in Google infrastructure services.!”
Detailed logs from realistic systems
contain a great deal of valuable detail,
but they tend to be so large that they are
overwhelming to programmers, who as a
result cannot directly benefit from them.

Visualization. The complexity of dis-
tributed systems has inspired work on
visualization of such systems to make
them more transparent to developers.
For example, Theia displays a visual sig-
nature that summarizes various aspects
of a Hadoop execution, such as the exe-
cution’s resource utilization.’ These sig-
natures can be used to spot anomalies
and to compare executions. Tools such
as Theia provide high-level summaries
of a system’s behavior. They do not,
however, help a developer understand
the underlying communication pattern
in the system, including the distributed
ordering of messages.

Visualizing Distributed-System
Executions
As noted earlier, the ability to visualize
distributed-system executions can
help developers understand and de-
bug their distributed systems. ShiViz
is such a visualization tool, display-
ing distributed-system executions as
interactive time-space diagrams that
explicitly capture distributed ordering
of messages and events in the system.
This diagram reproduces the events
and interactions captured in the ex-
ecution log, making the ordering in-
formation explicit through a concise
visualization. A developer can expand,
collapse, and hide parts of the dia-
gram, as well as search for particular
interaction patterns. ShiViz is freely
available as a browser application; any
developer can visualize a log, without
installing software or sending the log
over the network.

To provide a rich and accurate visu-



alization of a distributed system’s ex-
ecution, ShiViz displays the happens-
beforerelation. Given event e at node n,
the happens-before relation indicates
all the events that logically precede e.
Other events might have already oc-
curred at other nodes according to
wall-clock time, but node n cannot tell
whether those other events happened
before or after e, and they do not affect
the behavior of e. This partial order
can rule out which events do not cause
others, identify concurrent events,
and help developers mentally replay
parts of the execution.

Figure 1 illustrates an execution of
the two-phase commit protocol with
one transaction manager and two rep-
licas.! This time-space diagram is a
visualization of the underlying hap-
pens-before partial order, showing an
execution with three nodes. Lines with
arrows denote the partial ordering of
events, each of which has an associated
vector timestamp in brackets. (See the
accompanying sidebar on timestamps.)

Figure 2 shows a screenshot of
Shiviz visualizing an execution of a
distributed data-store system called
Voldemort.”” In the middle of the
screen is the time-space diagram,
with time flowing from top to bottom.

The colored boxes at the top represent
nodes, and the vertical lines below
them are the node timelines. Circles
on each node’s timeline represent
events executed by that node. Edges
connect events, representing the re-
corded happens-before relation: an
event that is higher in the graph hap-
pened before an event positioned
lower in the graph that it is connected
to via a downward path. ShiViz aug-
ments the time-space diagram with
operations to help developers explore
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distributed-system executions and
corresponding logs. Figure 2 details
some of these operations.

Understanding Distributed-System
Executions

Shiviz helps developers to understand
the relative ordering of events and
the likely chains of causality between
events, which is important for debug-
ging concurrent behavior; to query for
certain events and interaction patterns
between hosts; and to identify structur-

Figure 1. Time-space diagram of an execution with three nodes.

replica 1 tx manager replica 2
tx prepare
[0,1,0)
/ l \ commit
abort r2 commit o
[11,0) \ [0,2,1)
rl abort
[1,31)
tx abort
v / l 4, 1 \ v
tx aborted tx aborted
[2.4,1) [1.4,2)

Figure 2. A ShiViz screenshot.
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ShiViz display log lines that correspond to the
currently visible time-space diagram to the right.

Protocol negotiated for Socket[addr=/127
792 collapsed events

Protocol negotiated for Socket[addr=/127

2 collapsed events

279 Closed, exiting

Protocol negotiated for Socket[addr=/127

Protocol negotiated for Socket[addr=/127

2 collapsed events

Closed, exiting

Search the visualization

ShiViz supports searching the time-space

Closed, exiting

diagram by keywords and by structure. date: 2013-05-24 23:2811
path: voldemort.store.so
priority: INFO

. . . . host: nio-client1

Boxes represent nodes in the system; the box
colors provide a consistent coloring for events

Hovering over an event
displays its details.

and log lines associated with a node.

Each circle represents an
event on a node timeline.

° Local events with no

intermediate communication
can be collapsed into a larger
circle labeled with the number
of collapsed events.

Closed, exiting

date:

path:

Hidden processes:

The user can click on a node to hide it and its
log lines from the visualization. Hidden nodes
can be restored with a double click.

Clicking on an event
displays its details in
a popup and
highlights the
relevant log line in
the left panel.

2013-05-24 23:2
8:01,863
voldemort.store.s
ocket.clientreque
st.ClientRequest
ExecutorFactory
$ClientRequestS
electorManager
INFO

priority:

host: nio-client1
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Figure 3. Structured search feature.

#structure=[{"host":"a","clock":{"a":1}},{"host":"a","clock":{"a":2 X

Text Search Structured Search

Search for a custom structure: draw a graph
structure below (add processes, events, click
and drag to add inter-event edges).

L]

Search for a pre-defined structure:
Select one of the options below to
find the specified structure.

REQUEST-RESPONSE
BROADCAST

GATHER

Figure 4. The two-phase commit protocol executions.

2PC-TX-Committed g
| |

. ®
tx-commit
L4 host: replica2

al similarities and differences between
pairs and groups of executions. The
time-space diagram representation sup-
ports the first goal by visualizing event
ordering and communication. The next
section describes two search operations
that support the second goal, and op-
erations over multiple executions that
correspond to the third goal.

Keyword search and structured
search operations. ShiViz implements
two kinds of search operations: key-
word and structured. Both types are
accessible to the developer through the
top search bar (see Figure 2).

Keyword search allows adeveloperto
highlight all events in the diagram that
contain a field matching a query. For
example, searching for send will high-
light all events in the diagram that have
a field whose value is send. The results

2PC-TX-Aborted u

. @
tx-abort
¢ host: replica2

can be further constrained with field
identifiers and regular expressions. For
example, the query node=alice &&
priority=CRITICAL* will highlight
only events at the alice node with a
priority field matching the regular ex-
pression CRITICAL*.

In a structured search, a user que-
ries ShiViz for any set of events related
through a particular ordering pattern,
and ShiViz highlights the sections of the
diagram (events and their interconnec-
tions) that match this pattern. ShiViz in-
cludes several predefined patterns:

» Request-response. A source node
sends a request and the destination
node sends back a response.

» Broadcast. Anode sends a message
to most other nodes in the system.

» Gather. A node receives a message
from most other nodes.
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A user can also compose a cus-
tom pattern consisting of nodes, node
events, and connections between events
representing a partial order. Figure 3
shows such a custom pattern, depicting
three nodes communicating in a ring:
node 1 communicates only with node
2; node 2 with node 3; and node 3 with
node 1. Drawing this pattern allows the
user to search for all instances of this
three-node ring communication in the
execution. ShiViz automatically trans-
lates the drawn pattern into a textual
representation (see search bar at the
top), and it is possible to edit, copy, and
paste the textual representation direct-
ly. The structured search feature allows
users to express custom communica-
tion patterns between events and to
query an execution for instances of the
specified pattern. The presence or ab-
sence of queried subgraphs at particu-
lar points in an execution can help us-
ers detect anomalous behavior, aiding
them in their debugging efforts.

Comparing executions. ShiViz can
help users understand multiple execu-
tions of a system. When ShiViz parses
multiple executions, the user can
choose between viewing executions in-
dividually or pairwise.

In the pairwise view, a user can
compare the two executions further
by highlighting their differences.
When enabled, the nodes are com-
pared by name. For nodes present in
both executions, ShiViz compares
their events one by one by comparing
the corresponding event descriptions.
Nodes or events in one execution that
donot appear in the other are redrawn
as rhombuses.

Figure 4 illustrates this pairwise
comparison on a log of the two-phase
commit protocol. The two selected
events in the figure explain the differ-
ence between these two executions:
the two-phase commit successfully
commits a transaction in the left exe-
cution, but aborts a transaction in the
right execution.

The explicit highlighting of differ-
ences provides users with fast detec-
tion of anomalous events or points
where the two executions diverge. The
search features described earlier can
be applied in the pairwise view to help
developers detect specific unifying or
distinguishing features across traces,
allowing them to design and test their



systems more effectively.

Clustering executions. To help
manage many executions, ShiViz sup-
ports grouping executions into clus-
ters. A user can cluster by the num-
ber of nodes or by comparison to a
base execution, using as a distance
metric the differencing mechanism
described earlier. Cluster results are
presented as distinct groups of listed
execution names.

Execution clusters aid in the inspec-
tion and comparison of multiple ex-
ecutions by providing an overview of all
executions at once. Users can quickly
scan through cluster results to see
how executions are alike or different,
based on the groups into which they
are sorted. Clustering also helps users
pinpoint executions of interest by al-
lowing them to inspect a subset of ex-
ecutions matching a desired measure.
This subset can be further narrowed
by performing a keyword search or a
structured search on top of the cluster-
ing results. Execution names among
clusters are highlighted if their cor-
responding graphs contain instances
matching the user’s search query.

ShiViz helps developers visualize the
event order, search for communication
patterns, and identify potential event
causality. This can help developers rea-
son about the concurrency of events in
an execution, distributed system state,
and distributed failure modes, as well
as formulate hypotheses about system
behavior and verify them via execution
visualizations. Meanwhile, the gener-
ality of logging makes ShiVector and
Shiviz broadly applicable to systems
deployed on a wide range of devices.

ShiViz has some limitations. ShiViz
surfaces low-level ordering informa-
tion, which makes it a poor choice
for understanding high-level system
behavior. The ShiViz visualization is
based on logical and not realtime or-
dering, and cannot be used to study cer-
tain performance characteristics. The
ShiVviz tool is implemented as a client-
side-only browser application, making
it portable and appropriate for ana-
lyzing sensitive log data. This design
choice, however, also limits its scalabil-
ity. A related and complementary tool
to ShiViz is Ravel, which can scalably
visualize parallel execution traces.®

ShiViz is an open source tool with an
online deployment (http://bestchai.bit-

bucket.org/shiviz/). Watch a video dem-
onstrating key ShiViz features at http://
bestchai.bitbucket.org/shiviz-demo/.
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