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DISTRIBUTED SYSTEMS POSE  unique challenges for 
software developers. Reasoning about concurrent 
activities of system nodes and even understanding the 
system’s communication topology can be difficult. 
A standard approach to gaining insight into system 
activity is to analyze system logs. Unfortunately, this can 
be a tedious and complex process. This article looks 
at several key features and debugging challenges that 
differentiate distributed systems from other kinds of 
software. The article presents several promising tools 
and ongoing research to help resolve these challenges.

Distributed systems differ from single-machine 
programs in ways that are simultaneously positive 
in providing systems with special capabilities, and 
negative in presenting software-development and 
operational challenges.

Heterogeneity. A distributed sys-
tem’s nodes may include mobile 
phones, laptops, server-class ma-
chines, and more. This hardware and 
software diversity in node resources 
and network connectivity can make a 
distributed system more robust, but 
this heterogeneity forces developers 
to manage compatibility during both 
development and debugging.

Concurrency. Simultaneous op-
eration by multiple nodes leads to 
concurrency, which can make a dis-
tributed system outperform a cen-
tralized system. However, concur-
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rency may introduce race conditions 
and deadlocks, which are notorious-
ly difficult to diagnose and debug. 
Additionally, networks introduce 
packet delay and loss, exacerbating 
the issues of understanding and de-
bugging concurrency.

Distributing state. Distributing 
system state across multiple nodes 
can remove a central point of failure 
and improve scalability, but distrib-
uted state requires intricate node 
coordination to synchronize state 
across nodes—for example, nodes 
must ensure their local states are 

consistent. Potential inconsistencies 
are prevented by distributed algo-
rithms, such as those that guarantee 
a particular flavor of data consisten-
cy and cache coherence. Developers 
may find it difficult, or even impossi-
ble, to reconstruct the global state of 
the system when it is distributed on 
many nodes. This complicates bug 
diagnosis and validation.

Partial failures. The distribution 
of state and responsibility allows dis-
tributed systems to be robust and sur-
vive a variety of failures. For example, 
Google’s Spanner system can survive 

failures of entire data centers.2 Achiev-
ing such fault tolerance, however, re-
quires developers to reason through 
complex failure modes. For most dis-
tributed systems, fault tolerance can-
not be an afterthought; the systems 
must be designed to deal with failures. 
Such failure resiliency is complex to 
design and difficult to test.

Existing Approaches
What follows is an overview of seven 
approaches designed to help software 
engineers validate and debug distrib-
uted systems.
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because it focuses on a specific subset 
of the data, but it requires instrument-
ing applications and protocols to prop-
erly forward, without consuming, the 
tracing metadata.

Log analysis is an even lighter-weight 
approach that works with systems that 
cannot be modified. It is a common 
black-box approach in which a system’s 
console logs, debug logs, and other log 
sources are used to understand the sys-
tem. For example, Xu et al. applied ma-
chine learning to logs to detect anoma-
lies in Google infrastructure services.17 
Detailed logs from realistic systems 
contain a great deal of valuable detail, 
but they tend to be so large that they are 
overwhelming to programmers, who as a 
result cannot directly benefit from them. 

Visualization. The complexity of dis-
tributed systems has inspired work on 
visualization of such systems to make 
them more transparent to developers. 
For example, Theia displays a visual sig-
nature that summarizes various aspects 
of a Hadoop execution, such as the exe-
cution’s resource utilization.3 These sig-
natures can be used to spot anomalies 
and to compare executions. Tools such 
as Theia provide high-level summaries 
of a system’s behavior. They do not, 
however, help a developer understand 
the underlying communication pattern 
in the system, including the distributed 
ordering of messages.

Visualizing Distributed-System  
Executions
As noted earlier, the ability to visualize 
distributed-system executions can 
help developers understand and de-
bug their distributed systems. ShiViz 
is such a visualization tool, display-
ing distributed-system executions as 
interactive time-space diagrams that 
explicitly capture distributed ordering 
of messages and events in the system. 
This diagram reproduces the events 
and interactions captured in the ex-
ecution log, making the ordering in-
formation explicit through a concise 
visualization. A developer can expand, 
collapse, and hide parts of the dia-
gram, as well as search for particular 
interaction patterns. ShiViz is freely 
available as a browser application; any 
developer can visualize a log, without 
installing software or sending the log 
over the network.

To provide a rich and accurate visu-

Testing. A test suite exercises a spe-
cific set of executions to ensure that they 
behave properly. Most testing of dis-
tributed systems is done using manu-
ally written tests, typically introduced 
in response to failures and then mini-
mized.14 Testing is an effective way to de-
tect errors. However, since testing exer-
cises a limited number of executions, it 
can never guarantee to reveal all errors.

Model checking is exhaustive testing, 
typically up to a certain bound (number 
of messages or steps in an execution). 
Symbolic model checking represents 
and explores possible executions math-
ematically; explicit-state model check-
ing is more practical because it actually 
runs the program, controlling its execu-
tions rather than attempting to abstract 
it. MoDist performs black-box model 
checking, permuting message sequenc-
es and changing the execution speed 
of a process relative to other processes 
in the system.18 MaceMC is a white-box 
technique that achieves speedups by 
adding programming-language sup-
port for model checking.7 Common 
problems of all model-checking tools 
are scalability and environmental mod-
eling, so they rarely achieve a guarantee.

Theorem proving can, in principle, 
prove a distributed system to be free of 
defects. Amazon uses TLA+ to verify its 
distributed systems.11 Two recent sys-
tems can construct a verified distribut-
ed-system implementation. Verdi uses 
the Coq tool, whose expressive type sys-
tem makes type checking equivalent to 
theorem proving, thanks to the Curry-

Howard isomorphism; the Coq specifi-
cation is then compiled into an OCaml 
implementation of the distributed sys-
tem.16 In contrast, IronFleet uses TLA 
and Hoare-logic verification to similarly 
produce a verified implementation of 
a distributed system.5 The enormous 
effort needed to use these tools makes 
them most appropriate for new imple-
mentations of small, critical cores. Oth-
er techniques are needed for existing 
distributed systems.

Record and replay captures a single 
execution of the system so that this 
execution can be later replayed or ana-
lyzed. This is especially useful when de-
bugging nondeterministic behaviors. A 
record-and-replay tool such as Friday4 
or D3S8 captures all nondeterministic 
events so that an execution can be re-
produced exactly. Recording a complex 
execution, however, may be prohibitive-
ly expensive and may change the behav-
ior of the underlying system.

Tracing tracks the flow of data 
through a system, even across applica-
tions and protocols such as a database, 
Web server, domain-name server, load 
balancer, or virtual private network 
protocol.13 For example, pivot tracing 
dynamically instruments Java-based 
systems to collect user-defined metrics 
at different points in the system and col-
lates the resulting data to provide an in-
ter-component view of the metrics over 
multiple executions.9 Dapper is a lower-
level tracing system used at Google to 
trace infrastructure services.15 Tracing 
is more efficient than record and replay 

A typical distributed-system log does not contain enough information to regenerate 
the happens-before relation, and this is one reason that distributed-system logs are 
so hard to interpret. ShiViz relies on logs that have been enhanced by another tool, 
ShiVector, to include vector clock timestamps that capture the happens-before relation 
between events.10 Each node α maintains a vector of logical clocks, one clock for each 
node in the distributed system, including itself. α’s ith clock is a lower bound on the 
current logical time at node i. The node α increments the αth component of its vector 
clock each time it performs a local action or sends or receives a message. Each message 
contains the sending node’s current vector clock; upon message receipt, the receiving 
node updates its vector clock to the elementwise maximum of its local and received 
timestamps.

ShiVector is a lightweight instrumentation tool that augments the information 
already logged by a distributed system with the partial ordering information encoded 
as vector clocks. ShiVector interposes on communication and logging channels at each 
node in the system to add vector clock timestamps to every logged event.

ShiViz parses ShiVector-augmented logs to determine, for each event: the node 
that executed the event; the vector timestamp of the event; and the event’s description. 
ShiViz permits a user to customize the parsing of logs using regular expressions, which 
can be used to associate additional information, or fields, with each event.

Distributed Timestamps
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alization of a distributed system’s ex-
ecution, ShiViz displays the happens-
before relation. Given event e at node n, 
the happens-before relation indicates 
all the events that logically precede e. 
Other events might have already oc-
curred at other nodes according to 
wall-clock time, but node n cannot tell 
whether those other events happened 
before or after e, and they do not affect 
the behavior of e. This partial order 
can rule out which events do not cause 
others, identify concurrent events, 
and help developers mentally replay 
parts of the execution. 

Figure 1 illustrates an execution of 
the two-phase commit protocol with 
one transaction manager and two rep-
licas.1 This time-space diagram is a 
visualization of the underlying hap-
pens-before partial order, showing an 
execution with three nodes. Lines with 
arrows denote the partial ordering of 
events, each of which has an associated 
vector timestamp in brackets. (See the 
accompanying sidebar on timestamps.)

Figure 2 shows a screenshot of 
ShiViz visualizing an execution of a 
distributed data-store system called 
Voldemort.12 In the middle of the 
screen is the time-space diagram, 
with time flowing from top to bottom. 

The colored boxes at the top represent 
nodes, and the vertical lines below 
them are the node timelines. Circles 
on each node’s timeline represent 
events executed by that node. Edges 
connect events, representing the re-
corded happens-before relation: an 
event that is higher in the graph hap-
pened before an event positioned 
lower in the graph that it is connected 
to via a downward path. ShiViz aug-
ments the time-space diagram with 
operations to help developers explore 

distributed-system executions and 
corresponding logs. Figure 2 details 
some of these operations. 

Understanding Distributed-System 
Executions
ShiViz helps developers to understand 
the relative ordering of events and 
the likely chains of causality between 
events, which is important for debug-
ging concurrent behavior; to query for 
certain events and interaction patterns 
between hosts; and to identify structur-

Figure 1.  Time-space diagram of an execution with three nodes.
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Figure 2.  A ShiViz screenshot.
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Log lines Motifs

Search the visualization

Clicking on an event 
displays its details in 
a popup and 
highlights the 
relevant log line in 
the left panel.

Boxes represent nodes in the system; the box 
colors provide a consistent coloring for events 
and log lines associated with a node.

Each circle represents an 
event on a node timeline.

Local events with no 
intermediate communication 
can be collapsed into a larger 
circle labeled with the number 
of collapsed events.

ShiViz supports searching the time-space 
diagram by keywords and by structure.

Hovering over an event 
displays its details.

The user can click on a node to hide it and its 
log lines from the visualization. Hidden nodes 
can be restored with a double click.

ShiViz display log lines that correspond to the 
currently visible time-space diagram to the right.
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A user can also compose a cus-
tom pattern consisting of nodes, node 
events, and connections between events 
representing a partial order. Figure 3 
shows such a custom pattern, depicting 
three nodes communicating in a ring: 
node 1 communicates only with node 
2; node 2 with node 3; and node 3 with 
node 1. Drawing this pattern allows the 
user to search for all instances of this 
three-node ring communication in the 
execution. ShiViz automatically trans-
lates the drawn pattern into a textual 
representation (see search bar at the 
top), and it is possible to edit, copy, and 
paste the textual representation direct-
ly. The structured search feature allows 
users to express custom communica-
tion patterns between events and to 
query an execution for instances of the 
specified pattern. The presence or ab-
sence of queried subgraphs at particu-
lar points in an execution can help us-
ers detect anomalous behavior, aiding 
them in their debugging efforts.

Comparing executions. ShiViz can 
help users understand multiple execu-
tions of a system. When ShiViz parses 
multiple executions, the user can 
choose between viewing executions in-
dividually or pairwise.

In the pairwise view, a user can 
compare the two executions further 
by highlighting their differences. 
When enabled, the nodes are com-
pared by name. For nodes present in 
both executions, ShiViz compares 
their events one by one by comparing 
the corresponding event descriptions. 
Nodes or events in one execution that 
do not appear in the other are redrawn 
as rhombuses. 

Figure 4 illustrates this pairwise 
comparison on a log of the two-phase 
commit protocol. The two selected 
events in the figure explain the differ-
ence between these two executions: 
the two-phase commit successfully 
commits a transaction in the left exe-
cution, but aborts a transaction in the 
right execution.

The explicit highlighting of differ-
ences provides users with fast detec-
tion of anomalous events or points 
where the two executions diverge. The 
search features described earlier can 
be applied in the pairwise view to help 
developers detect specific unifying or 
distinguishing features across traces, 
allowing them to design and test their 

al similarities and differences between 
pairs and groups of executions. The 
time-space diagram representation sup-
ports the first goal by visualizing event 
ordering and communication. The next 
section describes two search operations 
that support the second goal, and op-
erations over multiple executions that 
correspond to the third goal.

Keyword search and structured 
search operations. ShiViz implements 
two kinds of search operations: key-
word and structured. Both types are 
accessible to the developer through the 
top search bar (see Figure 2). 

Keyword search allows a developer to 
highlight all events in the diagram that 
contain a field matching a query. For 
example, searching for send will high-
light all events in the diagram that have 
a field whose value is send. The results 

can be further constrained with field 
identifiers and regular expressions. For 
example, the query node=alice && 
priority=CRITICAL* will highlight 
only events at the alice node with a 
priority field matching the regular ex-
pression CRITICAL*.

In a structured search, a user que-
ries ShiViz for any set of events related 
through a particular ordering pattern, 
and ShiViz highlights the sections of the 
diagram (events and their interconnec-
tions) that match this pattern. ShiViz in-
cludes several predefined patterns: 

˲˲ Request-response. A source node 
sends a request and the destination 
node sends back a response.

˲˲ Broadcast. A node sends a message 
to most other nodes in the system.

˲˲ Gather. A node receives a message 
from most other nodes. 

Figure 3.  Structured search feature.

Sending SLDeliver(Data

Message(1,Message1)) t

o node1

date: 10/13/2014

14:37:20.550

host: node0

Initiating RBBroadcast(DataMessage(1,Message1))

Sending SLDeliver(DataMessage(1,Message1)) to node1

Sending SLDeliver(DataMessage(1,Message1)) to node2
Received SLDeliver(DataMessage(1,Message1)) from node0

Sending ACK(1) to node0
Received SLDeliver(DataMessage(1,Message1)) from node0

Received ACK(1) from node1
RBDeliver of message DataMessage(1,Message1) from node0
Sending ACK(1) to node0

Sending SLDeliver(DataMessage(1,Message1)) to node0
RBDeliver of message DataMessage(1,Message1) from node0

Received SLDeliver(DataMessage(1,Message1)) from node1
Sending SLDeliver(DataMessage(1,Message1)) to node2
Sending SLDeliver(DataMessage(1,Message1)) to node0

Sending ACK(1) to node1
Sending SLDeliver(DataMessage(1,Message1)) to node1

RBDeliver of message DataMessage(1,Message1) from node1
Received SLDeliver(DataMessage(1,Message1)) from node2
Received SLDeliver(DataMessage(1,Message1)) from node1

Sending SLDeliver(DataMessage(1,Message1)) to node1
Sending ACK(1) to node2
Sending ACK(1) to node1

Sending SLDeliver(DataMessage(1,Message1)) to node2
Received ACK(1) from node2
Received ACK(1) from node1

Received ACK(1) from node2
Received ACK(1) from node0
Received SLDeliver(DataMessage(1,Message1)) from node0

Received SLDeliver(DataMessage(1,Message1)) from node2
Received SLDeliver(DataMessage(1,Message1)) from node0
Sending ACK(1) to node0

Sending ACK(1) to node2
Sending ACK(1) to node0

Received ACK(1) from node1
Handle Tick()
Received ACK(1) from node0

Received ACK(1) from node2
Handle Tick()

Handle Tick()

Log lines Motifs

#structure=[{"host":"a","clock":{"a":1}},{"host":"a","clock":{"a":2,"c":1,"b":1}},{"host":"b","clock":{"b":1,"a":1}},{"host":"c","clock":{"c":1,"b":1,"a":1}}]

Structured Search

Search for a custom structure: draw a graph

structure below (add processes, events, click

and drag to add inter-event edges). 

Search for a pre-defined structure:
Select one of the options below to

find the specified structure.

Text Search

+

Figure 4.  The two-phase commit protocol executions.
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systems more effectively.
Clustering executions. To help 

manage many executions, ShiViz sup-
ports grouping executions into clus-
ters. A user can cluster by the num-
ber of nodes or by comparison to a 
base execution, using as a distance 
metric the differencing mechanism 
described earlier. Cluster results are 
presented as distinct groups of listed 
execution names.

Execution clusters aid in the inspec-
tion and comparison of multiple ex-
ecutions by providing an overview of all 
executions at once. Users can quickly 
scan through cluster results to see 
how executions are alike or different, 
based on the groups into which they 
are sorted. Clustering also helps users 
pinpoint executions of interest by al-
lowing them to inspect a subset of ex-
ecutions matching a desired measure. 
This subset can be further narrowed 
by performing a keyword search or a 
structured search on top of the cluster-
ing results. Execution names among 
clusters are highlighted if their cor-
responding graphs contain instances 
matching the user’s search query.

ShiViz helps developers visualize the 
event order, search for communication 
patterns, and identify potential event 
causality. This can help developers rea-
son about the concurrency of events in 
an execution, distributed system state, 
and distributed failure modes, as well 
as formulate hypotheses about system 
behavior and verify them via execution 
visualizations. Meanwhile, the gener-
ality of logging makes ShiVector and 
ShiViz broadly applicable to systems 
deployed on a wide range of devices.

ShiViz has some limitations. ShiViz 
surfaces low-level ordering informa-
tion, which makes it a poor choice 
for understanding high-level system 
behavior. The ShiViz visualization is 
based on logical and not realtime or-
dering, and cannot be used to study cer-
tain performance characteristics. The 
ShiViz tool is implemented as a client-
side-only browser application, making 
it portable and appropriate for ana-
lyzing sensitive log data. This design 
choice, however, also limits its scalabil-
ity. A related and complementary tool 
to ShiViz is Ravel, which can scalably 
visualize parallel execution traces.6

ShiViz is an open source tool with an 
online deployment (http://bestchai.bit-

bucket.org/shiviz/). Watch a video dem-
onstrating key ShiViz features at http://
bestchai.bitbucket.org/shiviz-demo/.
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