
Context

Engineering
Designing the systems that control what

information reaches the model and how it

maintains coherence.

Introduction

The Evolution: From Prompts to Actions

The Orchestration Challenge

The Next Frontier of Tool Use

The Future of AI Engineering

Tools

Summary

What Are Agents?

01

04

05

07

08

10

11

12

13

25

26

26

27

29

31

35

36

39

40

15

17

18

20

23

What Is Context Engineering?

The Context Window Challenge

Strategies and Tasks for Agents

Where Agents Fit in Context Engineering

Agents

A Guide to Chunking Strategies

Simple Chunking Strategies

Advanced Chunking Strategies

Pre-Chunking vs. Post-Chunking

Summary

Retrieval

The Architecture of Agent Memory

Key Principles for Effective Memory ManagementMemory

Query Augmentation

Query Rewriting

Query Expansion

Query Decomposition

Query Agents

Table of Contents

Prompting Techniques

Classic Prompting Techniques

Advanced Prompting Techniques

Prompting for Tool Usage

Using Prompt Frameworks

Context engineering

Introduction

Every developer who builds with Large Language Models (LLMs) eventually hits the same

wall. You start with a powerful model that can write, summarize, and reason with

stunning capability. But when you try to apply it to a real-world problem, the cracks start

to appear. It can't answer questions about your private documents. It has no knowledge

of events that happened yesterday. It confidently makes things up when it doesn't know

an answer.

Add to
memory

User

Long-Term Memory

Input Agent

Short-Term Memory

Prompt

DatabasesMCP

Answer

1

3

2

4

7

8 6

5

Action Tools

RAG

Vector search
(retrieval)

Agentic coordination
& decision making

Update prompt
with answer

Store all context in
chat history

The system that gives your
application a sense of history and
the ability to learn from interactions.

Memory

The problem isn't the model's intelligence. The

problem is that it's fundamentally disconnected.

It's a powerful but isolated brain, with no access

to your specific data, the live internet, or even a

memory of your last conversation. This isolation

is a direct result of its core architectural limit:

the context window. The context window is the

model's active working memory—the finite

space where it holds the instructions and

information for the current task. Every word,

number, and piece of punctuation consumes

space in this window. Just like a whiteboard,

once it’s full, older information gets erased to

make room for new instructions, and important

details can be lost.

You can't fix this fundamental limitation by just

writing better prompts. You have to build a

system around the model.

That is Context Engineering.

Context Engineering is the discipline of

designing the architecture that feeds an LLM

the right information at the right time. It’s not

about changing the model itself, but about

building the bridges that connect it to the

outside world, retrieving external data,

connecting it to live tools, and giving it a

memory to ground its responses in facts, not

just its training data.

This ebook is the blueprint for that system. We

will cover the core components required to turn

a brilliant but isolated model into a reliable,

production-ready application.

Mastering these components is the difference

between a reasonable demo and a truly

intelligent system. Let's get to work.

The decision-making brain that
orchestrates how and when to use
information.

Agents

The art of translating messy,
ambiguous user requests into
precise, machine-readable intent.

Query
Augmentation

The bridge connecting the LLM to
your specific documents and
knowledge bases.

Retrieval

The skill of giving clear, effective
instructions to guide the model's
reasoning.

Prompting
Techniques

The hands that allow your
application to take direct action and
interact with live data sources.

Tools

01 02Context engineering

Agents

As soon as you start building real systems with large language models, you run into the

limits of static pipelines. A fixed recipe of “retrieve, then generate” works fine for simple

Retrieval Augmented Generation (RAG) setups, but it falls apart once the task requires

judgment, adaptation, or multi-step reasoning.

This is where agents come in. In the context of context engineering, agents manage how

(and how well) information flows through a system. Instead of blindly following a script,

agents can evaluate what they know, decide what they still need, select the right tools,

and adjust their strategy when things go wrong.

Agents are both the architects of their contexts and the users of those contexts.

However, they need good practices and systems to guide them, because managing

context well is difficult, and getting it wrong quickly sabotages everything else the agent

can do.

Thinking...User

Prompt

Response AI Agent

The term "agent" gets used broadly, so let’s define it in the context of building with large

language models (LLMs). An AI agent is a system that can:

What Are Agents?

Attempt to handle all tasks themselves, which

works well for moderately complex workflows.

Single-Agent Architecture

Distribute work across specialized agents per

task. Allows for complex workflows but introduces

coordination challenges.

Multi-Agent Architecture

Retrieved
information

relevant?

Each

sub-query

User
query

Memory

Response

Decompose
query into

sub-queries

Query routing
& processing

Search
tools

Generate
response

YES

YES

NO

NO

YES NO

Additional
information
required?

Answered
before?

Make dynamic decisions about information
flow. Rather than following a predetermined
path, agents decide what to do next based
on what they've learned.

Maintain state across multiple interactions.
Unlike simple Q&A systems, agents
remember what they've done and use that
history to inform future decisions.

Use tools adaptively. They can
select from available tools and
combine them in ways that
weren’t explicitly programmed.

Modify their approach based
on results. When one strategy
isn’t working, they can try
different approaches.

1

3

2

4
ReasoningLegend

Tool Use

Memory

03 04Context engineering

This is one of the most critical parts of managing agentic systems. Agents don’t just need

memory and tools; they also need to monitor and manage the quality of their own

context. That means avoiding overload, detecting irrelevant or conflicting information,

pruning or compressing as needed, and keeping their in-context memory clean enough to

reason effectively.

Context Hygiene

LLMs have limited information capacity because the context window can only

hold so much information at once. This fundamental constraint shapes what

agents and agentic systems are currently capable of.

Every time an agent is processing information, it needs to make decisions about:

The Context Window Challenge

What information should remain
active in the context window

What should be stored externally
and retrieved when needed

What can be summarized or
compressed to save space

How much space to reserve for
reasoning and planning

It’s tempting to assume that bigger context windows solve this

problem, but this is simply not the case. Longer contexts (hundreds of

thousands or even ~1M tokens) actually introduces new failure modes.

Performance often begins to degrade far before the model reaches

maximum token capacity, where agents will become confused, have

higher rates of hallucination, or simply stop performing at the level

they’re normally capable of. This isn’t just a technical limitation, it’s a

core design challenge of any AI app.

Context Distraction

The agent becomes burdened by too much
past information—history, tool outputs,
summaries—and over-relies on repeating
past behavior rather than reasoning fresh.

Context Confusion

Irrelevant tools or documents crowd the
context, distracting the model and causing
it to use the wrong tool or instructions.

Context Clash

Contradictory information within the
context misleads the agent, leaving it
stuck between conflicting assumptions.

Context

Context

Context Poisoning

Incorrect or hallucinated information
enters the context. Because agents
reuse and build upon that context,
these errors persist and compound.

Here are some common types of errors that begin to happen or increase

as context window size grows:

Context

05 06Context engineering

Quality Validation:
Checking whether
retrieved information is
consistent and useful.

Context Summarization:
Periodically compressing
accumulated history into
summaries to reduce
burden while preserving
key knowledge.

Context Pruning:

Actively removing
irrelevant or outdated
context, either with
specialized pruning models
or a dedicated LLM tool.

Context Offloading: Storing details
externally and retrieving them only
when needed, instead of keeping
everything in active context.Failed

Change strategy

Adaptive Retrieval Strategies:
Reformulating queries, switching
knowledge bases, or changing chunking
strategies when initial attempts fail.

Dynamic Tool Selection: Instead of dumping
every possible tool into the prompt, agents
filter and load only those relevant to the task.
This reduces confusion and improves accuracy.

Multi-Source Synthesis:
Combining information from
multiple sources, resolving
conflicts, and producing
coherent answers.

Strategies and
Tasks for Agents

Agents are able to effectively orchestrate context

systems because of their ability to reason and

make decisions in a dynamic way. Here are some

of the most common tasks agents are built for

and employ to manage contexts.

Agents serve as coordinators in your context engineering system. They don’t replace the
techniques covered in other sections, instead, they orchestrate them intelligently. An
agent might apply query rewriting when initial searches are unsuccessful, choose
different chunking strategies based on the type of content it encounters, or decide when
conversation history should be compressed to make room for new information. They
provide the orchestration layer needed to make dynamic, context-appropriate decisions
about information management.

Where Agents Fit in Context Engineering

Different types of agents and functions within a context engineering system:

Vector DB Episodic
and Factual Store

LONG TERM MEMORY

short TERM MEMORY

MEMORY

Planning
Route to

Specialized

Data Collection
Selector Retriever

Tool Router

Query Rewriter

Answer
Synthesizer

Compressor

Working Memory

Tools and APIs

Vector DB
Knowledge
Collections

Web and Search
APIs

EXTERNAL KNOWLEDGE
SOURCES

CAPABILITIES AND
KNOWLEDGE SOURCES

SUPERVISORS

SPECIALIZED AGENTS

Generate Final
Response

Send Context
for Synthesis

Refine Query

Return Tool
Results

Return
Retrieved
Facts

Sync
Episodic
Memory

Query and Update

Send Retrieval
Request

07 08Context engineering

Query rewriting transforms the original user query into a more effective version for

information retrieval. Instead of just doing retrieve-then-read, applications now do a

rewrite-retrieve-read approach. This technique restructures oddly written questions so

they can be better understood by the system, removes irrelevant context, introduces

common keywords that improve matching with correct context, and can split complex

questions into simpler sub-questions.

Query Rewriting

How do i make
this work when
my api call keeps
failing?

query=”API call failure,
troubleshooting
authentication headers,
rate limiting, network
timeout, 500 error”

Raw Query Query Re-writer (LLM) Rewritten Query

RAG applications are sensitive to the phrasing and specific
keywords of the query, so this technique works by:

Restructuring
Unclear Questions:

Context
Removal:

Keyword
Enhancement:

Transforms vague or
poorly formed user
input into precise,
information-dense
terms.

Eliminates irrelevant
information that
could confuse the
retrieval process.

Introduces common
terminology that
increases the
likelihood of matching
relevant documents.

Query
Augmentation

One of the most important steps of context engineering is how you prepare and present

the user's query. Without knowing exactly what the user is asking, the LLM cannot

provide an accurate response.

Though this sounds simple, it's actually quite complex. There are two main issues to think

about:

Remember that query augmentation addresses the "garbage in, garbage out" problem at

the very start of your pipeline. No amount of sophisticated retrieval algorithms, advanced

reranking models, or clever prompt engineering can fully compensate for misunderstood

user intent.

Users often don't interact with
chatbots or inputs in the ideal way.

Different parts of the pipeline need to
deal with the query in different ways.

Many product builders will often develop

and test chatbots with queries that provide

the request and all additional information

that the LLM would need to understand the

question in a succinct, perfectly

punctuated, clear way. Unfortunately, in the

real world, user interactions with chatbots

can be unclear, messy, and not complete. In

order to build robust systems, it's important

to implement solutions that deal with all

types of interactions, not just ideal ones.

A question that an LLM could understand

well might not be the best format to search

through a vector database with. Or, a query

term that works best for a vector database

could be incomplete for an LLM to answer.

Therefore, we need a way to augment the

query that suits different tools and steps

within the pipeline.

1 2

09 10Context engineering

Query expansion enhances retrieval by generating multiple related queries from a single

user input. This approach improves results when user queries are vague, poorly formed,

or when you need broader coverage, such as with keyword-based retrieval systems.

Query Expansion

However, query expansion comes with challenges
that need careful management:

Query Drift: Over-Expansion: Computational
Overhead:

Expanded queries
may diverge from the
user's original intent,
leading to irrelevant or
off-topic results.

Adding too many
terms can reduce
precision and retrieve
excessive irrelevant
documents.

Processing multiple
queries increases
system latency and
resource usage.

Open source
NLP tools

Natural language processing tools

Free nlp libraries

Open source language processing platforms

NLP software with open source code

Query Re-Writer (LLM)Raw Query

Expanded Queries

Query decomposition breaks down complex, multi-faceted questions into simpler,

focused sub-queries that can be processed independently. This technique is especially

good for questions that require information from multiple sources or involve several

related concepts.

Query Decomposition

After retrieval, the context engineering system must aggregate and synthesize results

from all sub-queries to generate a coherent, comprehensive answer to the original

complex query.

Context Window

Decomposition Phase:

An LLM analyzes the original
complex query and breaks it into
smaller, focused sub-queries. Each
sub-query targets a specific aspect
of the original question.

Processing Phase:

Each sub-query is processed
independently through the retrieval
pipeline, allowing for more precise
matching with relevant documents.

The process typically involves two main stages:

11 12Context engineering

Finalize context

Construct query

Execution

Finish

Retrieved
information

relevant?

Response

Analysis: Use generative models (e.g. large language models) to analyze the
task & the required queries. Determine the exact queries to perform.

Generate a
text

response?

YES

YES

NO

NO

User query

Search Aggregation

Choose collection

Analysis

Dynamic Query Construction: Rather than using predetermined query patterns,
the agent constructs queries on-demand based on understanding both the user
intent and the data schema. This means it can add filters and adjust search
terms automatically to find the most relevant results in the database, as well as
choosing to run searches, aggregations or even both at the same time for you.

Query execution: Formulates and sends queries to the agent’s chosen
collection or collections.

Multi-collection routing: The agent understands the structure of all of your
collections, so it can intelligently decide which data collections to query based
on the user's question.

Evaluation: The agent can evaluate the retrieved information within the
context of the original user query. If there is missing information, the agent
can try a different knowledge source or new query.

(Op tional) Response generation: Receive the results from the database, and use
a generative model to generate the final response to the user’s prompt/query.

Contextual awareness: The context may also include previous conversation
history, and any other relevant information. The agent can maintain
conversation context for follow-up questions.

Vector database
Collection A

Vector database
Collection B

Query Agents are the most

advanced form of query

augmentation, using AI agents

to intelligently handle the entire

query processing pipeline,

combining the techniques

above.

A query agent takes a user’s

prompt/question in natural

language and decides the best

way to structure the query

based on it’s knowledge of the

database and data structure,

and can iteratively decide to re-

query and adjust based on the

results returned.

Query Agents

13 Context engineering

A Large Language Model is only as good as the information it can access. While LLMs are

trained on massive datasets, they lack knowledge of your specific, private documents

and any information created after their training was completed. To build truly intelligent

applications, you need to feed them the right external information at the right time. This

process is called Retrieval. Pre-Retrieval and Retrieval steps make up the first parts of

many AI architectures that rely on context engineering, such as Retrieval Augmented

Generation (RAG).

Pre-Retrieval

Query

Context

Response

Vector Database

Prompt Template

Embedding Model

LLM

ChunksDocuments

Retrieval

Retrieval

The challenge is simple in concept but tricky in practice: a raw dataset of documents is

almost always too large to fit into an LLM's limited context window (the inputs given to an

AI model). We can't just hand the model an entire set of user manuals or research papers.

Instead, we must find the perfect piece of those documents, the single paragraph or

section that contains the answer to a user's query.

To make our vast knowledge bases searchable and find that perfect piece, we must first

break our documents down into smaller, manageable parts. This foundational process,

known as chunking, is the key to successful retrieval.

Chunking is the most important decision you will make for your retrieval system's

performance. It is the process of breaking down large documents into smaller,

manageable pieces. Get it right, and your system will be able to pinpoint relevant facts

with surgical precision. Get it wrong, and even the most advanced LLM will fail.

A Guide to Chunking Techniques

Post-Chunking

Chunks

Learn how chunking strategies can help improve your RAG performance and explore different chunking
methods. Read the complete blog post here: weaviate.io/blog/chunking-strategies-for-rag

Document

Chunk

The Context Window

System prompt

User query

Relevant chunks

You are a helpful AI assistant...

What is a vector database?

Doc 1; Chunk 1 Doc 2; Chunk 1

Doc 2; Chunk 2 Doc 3; Chunk 1

14 15Context engineering

When designing your chunking strategy, you must balance two competing priorities:

Retrieval Precision: Chunks need to be small and focused on a single idea. This

creates a distinct, precise embedding, making it easier for a vector search system to

find an exact match for a user's query. Large chunks that mix multiple topics create

"averaged," noisy embeddings that are hard to retrieve accurately.

Contextual Richness: Chunks must be large and self-contained enough to be

understood. After a chunk is retrieved, it is passed to the LLM. If the chunk is just an

isolated sentence without context, even a powerful model will struggle to generate a

meaningful response.

The goal is to find the "chunking sweet spot", creating chunks that are small enough for

precise retrieval but complete enough to give the LLM the full context it needs.

Your choice of strategy will depend on the nature of your documents and the needs of

your application.

Contextual richnesslow high

high
R

et
ri

ev
al

 p
re

ci
si

on

Rich but Unfindable

Oversized chunks that contain

the answer but have "noisy"

embeddings, making them

impossible for the retrieval

system to find accurately.

The Sweet Spot (Optimal Chunks)

Semantically complete paragraphs

that are focused enough to be

found and rich enough to be

understood.

Precise but Incomplete

Overly small chunks (e.g.,

single sentences) that are easy

to find but lack the context for

the LLM to generate a good

response.

The Failure Zone

Poorly constructed, random

chunks that are neither

findable nor useful, the worst

of both worlds.

The Chunking Strategy Matrix

Recursive Chunking: A more intelligent approach that splits text using a prioritized list of

separators (like paragraphs, then sentences, then words). It respects the document's

natural structure and is a solid default choice for unstructured text.

Document-Based Chunking: This method uses the document's inherent structure. For

example, it splits a Markdown file by its headings (#, ##), an HTML file by its tags

(<p>, <div>), or source code by its functions.

This connection challenges our understanding of space

and time. When you measure one entangled particle, the

other's state changes instantly.

Quantum entanglement is a key concept in quantum

physics. It occurs when particles become linked, so the

state of one instantly affects the state of another, no

matter the distance between them

If chunks are too big, split again using the
next separator

Split the text using the highest-level separator

Repeat until all chunks fit within the desired
size while preserving meaning

Define a hierarchy of separators

(e.g., paragraphs → sentences → words)1

2

3

4

Vectorize each unit as a standalone chunk

Group content under each boundary into
cohesive units

Store chunks with metadata linking them
to their source document and section

Identify logical document boundaries
(e.g., chapters, sections, headings)

1

2

3

4

Heading This is a heading. --## Subheading This is a

subheading. We can continue with more content here. --

This is a second subheading Here is different content.

chunk 2 chunk 3chunk 1

Photosynthesis is one of nature's most vital processes.

overlap overlap

Simple Chunking Techniques
Fixed-Size Chunking: The simplest method. The text is split into chunks of a

predetermined size (e.g., 512 tokens). It's fast and easy but can awkwardly cut sentences

in half. Using an overlap (e.g., 50 tokens) between chunks helps mitigate this.

16 17Context engineering

Late Chunking: An architectural pattern that inverts the standard process. It embeds

the entire document first to create token-level embeddings with full context. Only then is

the document split into chunks, with each chunk's embedding derived from these pre-

computed, context-rich tokens.

Hierarchical Chunking: Creates multiple layers of chunks at different levels of detail (e.g.,

top-level summaries, mid-level sections, and granular paragraphs). This allows a retrieval

system to start with a broad overview and then drill down into specifics as needed.

Title

Abstract

Intro Intro

Method

Reference

Chunk 3Documents

Title

Reference Chunk 5

Method Chunk 4

Abstract Chunk 2

Chunk 1

“Alice went for a walk in the woods one day
and on her walk, she spotted something. She
saw a rabbit hole at the base of a large tree.
She fell into the hole and found herself in a
strange new world.”

Embedding Model

1

2

3

4

Embed the entire document using a
long-context model to generate
token-level embeddings.

Preserve context because the
embeddings were created with full
document context, each token
preserves its relationship to tokens in
neighboring chunks.

Pool strategically instead of pooling all
tokens into one vector, late chunking
pools tokens according to your chunking
strategy to get multiple contextually-
aware embeddings per document.

Chunk the token embeddings
(instead of the raw text).

LLM-Based Chunking: Uses a Large Language Model to intelligently process a document

and generate semantically coherent chunks. Instead of relying on fixed rules, the LLM can

identify logical propositions or summarize sections to create meaning-preserving pieces.

Agentic Chunking: This takes the concept a step further then LLM-Based Chunking. An AI

agent dynamically analyzes a document's structure and content to select the best chunking

strategy (or combination of strategies) to apply for that specific document.

Semantic Chunking: Instead of using separators, this technique splits text based on

meaning. It groups semantically related sentences together and creates a new chunk

only when the topic shifts, resulting in highly coherent, self-contained chunks.

Advanced Chunking Techniques

The water cycle is a continuous process by which water moves

through the Earth and atmosphere. It involves processes such as

evaporation, condensation, precipitation, and collection. Evaporation

occurs when the sun heats up water in rivers, lakes, or oceans,

turning it into vapor or steam. This vapor rises into the air and cools

down, forming clouds. Eventually, the clouds become heavy and

water falls back to the earth as precipitation, which can be rain,

snow, sleet, or hail. This water then collects in bodies of water,

continuing the cycle.

Calculate cosine distance between all pairs

Vectorize windows of sentences

Merge until breakpoint is reached

Split text into sentences or paragraphs1

2

3

4

Alex loves reading.

Alex visited the library.Alex visited the library.
He loves reading.

PropositionsInput text LLM

Markdown

HTML

PDF

DocxDocx

Documents Selecting Method Chunks Optimized
Chunks

Analyzes document
format and content

Semantic Chunking

Document-based Chunking

Fixed-size Chunking

Hybrid

Approach

18 19Context engineering

Beyond how you chunk, a key system design choice is when you chunk. This decision

leads to two primary architectural patterns.

Pre-Chunking vs. Post-Chunking

Pre-ChunkingPre-Processing

Retrieval by semantic similarity

Vector Database

Embedded Chunks

Retrieved Context

Augmented

Generation

Query

Output

Documents Chunks

Embedding Model

Large Language Model

Prompt Template

Clean text (remove headers,
footers, special characters, etc.)

Split documents into smaller chunks (e.g., 500 tokens
per chunk, semantic chunks, hierarchical chunks).

The most common method, where all data processing happens upfront and offline,

before any user queries come in.

Pre-Chunking

Workflow

Retrieval is extremely fast at query
time because all the work has already
been done. The system only needs to
perform a quick similarity search.

The chunking strategy is fixed. If you
decide to change your chunk size or
method, you must re-process your
entire dataset.

PRO CON

Clean Data -> Chunk Documents -> Embed & Store Chunks

An advanced, real-time alternative where chunking happens after a document has been

retrieved, in direct response to a user's query.

Post-Chunking

Workflow

It's highly flexible. You can create
dynamic chunking strategies that are
specific to the context of the user's
query, potentially leading to more
relevant results.

It adds latency. The chunking
process happens in real-time, making
the first response slower for the end-
user. It also requires more complex
infrastructure to manage.

PRO CON

Pre-Processing

Retrieval by semantic similarity

Vector Database

Retrieve full documents, then chunk and rerank before adding
to LLM context window. Store chunked documents.

Post-ChunkingRetrieved Context

Augmented

Generation

Query

Output

Documents

Embedding Model

Large Language Model

Prompt Template

Clean text (remove headers,
footers, special characters, etc.)

Chunks

We built a post-chunking strategy into Elysia, our open source agentic RAG framework.

You can read more about that here:

https://weaviate.io/blog/elysia-agentic-rag#chunk-on-demand-smarter-document-processing

Store Documents -> Retrieve Relevant Document -> Chunk Dynamically

20 21Context engineering

Guide to Choosing Your Chunking Strategy

Chunking
Strategy

Fixed-Size

Recursive

Document-
Based

Semantic

LLM-Based

Agentic

Late
Chunking

Hierarchical

How It Works

Splits by token or
character count.

Splits text by
repeatedly dividing
it until it fits the
desired chunk size,
often preserving
some structure.

Splits only at
document
boundaries or by
structural elements
like headers.

Splits text at natural
meaning boundaries
(topics, ideas).

Uses a language
model to decide
chunk boundaries
based on context
and meaning.

Lets an AI agent
decide how to split
based on meaning
and structure.

Embeds the whole
document first, then
derives chunk
embeddings from it.

Breaks text into
multiple levels
(sections →
paragraphs →
sentences).

Small or simple
docs, or when speed
matters most.

Documents where
some structure
should be
maintained but
speed is still
important.

Collections of
short, standalone
documents or
highly structured
files.

Technical, academic,
or narrative
documents where
topics shift without
clear separators.

Complex text where
meaning-aware
chunking improves
downstream tasks
like Q&A.

Complex, nuanced
documents that
require custom
strategies.

Use cases where
chunks need
awareness of the full
document's context.

Large, structured
documents where
both summary and
detail are needed.

Meeting notes,
short blog posts,
emails, simple FAQs.

Research articles,
product guides,
short reports.

News articles,
customer support
tickets, Markdown
files.

Scientific papers,
textbooks, novels,
whitepapers.

Long reports, legal
opinions, medical
records.

Regulatory filings,
multi-section
contracts,
corporate policies.

Case studies,
comprehensive
manuals, long-form
analysis reports.

Employee
handbooks,
government
regulations,
software
documentation.

Complexity Best For Examples

The effectiveness of your Retrieval Augmentation system is not determined by a single

“magic” bullet, but by a series of deliberate engineering choices. The quality of the

context you provide to an LLM is a direct result of two key decisions:

Summary

The Chunking Strategy The Architectural Pattern

The method you choose to break

down your documents.

The point at which you perform

the chunking.

The "How" The "When"

Mastering these two elements is fundamental to context engineering. A well-designed

retrieval system is the difference between an LLM that guesses and one that provides

fact-based, reliable, and contextually relevant answers.

22 23Context engineering

Prompting
Techniques

Prompt engineering is the practice of designing, refining, and optimizing inputs (prompts)

given to Large Language Models (LLMs) to get your desired output. The quality and

effectiveness of LLMs are heavily influenced by the prompts they receive, and the way

you phrase a prompt can directly affect the accuracy, usefulness, and clarity of the

response.

It’s essentially about interacting with AI efficiently: giving it instructions, examples, or

questions that guide the model toward the output you need.

In this section, we’ll go over prompting techniques that are essential for improving

Retrieval-Augmented Generation (RAG) applications and overall LLM performance.

Important Note: Prompt engineering focuses on how you phrase

instructions for the LLM. Context engineering, on the other

hand, is about structuring the information and knowledge you

provide to the model, such as retrieved documents, user

history, or domain-specific data, to maximize the model’s

understanding and relevance. Many of the techniques below

(CoT, Few-shot, ToT, ReAct) are most effective when combined

with well-engineered context.

This technique involves asking the model

to “think step-by-step” and break down

complex reasoning into intermediate

steps. This is especially helpful when

retrieved documents are dense or contain

conflicting information that requires

careful analysis. By verbalizing its

reasoning process, the LLM can come at

more accurate and logical conclusions.

Chain of Thought

This approach provides the LLM with a

few examples in the context window that

demonstrate the type of output or

“golden” answers you want. Showing

examples helps the model understand

the desired format, style, or reasoning

approach, improving response accuracy

and relevance, especially for specialized

or technical domains.

Few-Shot Prompting

Combining CoT and Few-shot examples is a powerful way to guide both the model’s

reasoning process and its output format for maximum efficiency.

Classic Prompting Techniques

Prompt

Response

Input Desired
outcome

Example

Input Desired
outcome

Example

LLM: pattern recognition
(format, style, logic)

Input Desired
outcome

Example

...

Response

Prompt

Thought

Thought

Pro Tip #1: Pro Tip #2:

Make the model reasoning in Chain of
Thought very specific to your use-case.
For example, you might ask the model to:

Maximize efficiency and reduce
token count, asking the model to
reason in a "draft" form, using no
more than 5 words per sentence.

This makes sure that the model's
thought process is visible while
reducing output token count.

E valuate the environment

Repeat any relevant information

Explain the importance of this information
to the current request

24 25Context engineering

Building on classic techniques, advanced strategies guide LLMs in more sophisticated ways:

Advanced Prompting Strategies

ToT builds on CoT by instructing the model

to explore and evaluate multiple reasoning

paths in parallel, much like a decision tree.

The model can generate several different

solutions to a problem and choose the best

result. This is especially useful in RAG

when there are many potential pieces of

evidence, and the model needs to weigh

different possible answers based on

multiple retrieved documents.

Tree of Thoughts (ToT):

Prompting for Tool Usage
When your LLM interacts with external tools, clear prompting ensures correct tool
selection and usage.

Defining Parameters and Execution Conditions

LLMs can sometimes make incorrect tool selections or
use tools in suboptimal ways. To prevent this, prompts
should clearly define:

Examples: Include few-shot examples
showcasing correct tool selection and
usage for various queries. For instance:

User Query:

"What's the weather like in Paris?" ->
Use Weather_API with city="Paris"

User Query:

"Find me a restaurant near the Eiffel
Tower." -> Use Restaurant_Search_Tool
with location="Eiffel Tower"

When to use a tool:

Specify scenarios or
conditions that trigger
a particular tool.

How to use a tool:

Provide expected
inputs, parameters, and
desired outputs.

This framework combines CoT with agents,

enabling the model to "Reason" (think) and

"Act" dynamically. The model generates both

reasoning traces and actions in an interleaved

manner, allowing it to interact with external

tools or data sources and adjust its reasoning

iteratively. ReAct can improve RAG pipelines by

enabling LLMs to interact with retrieved

documents in real time, updating reasoning

and actions based on external knowledge to

give more accurate and relevant responses.

ReAct Prompting:

If you are building a project that requires extensive prompting or want to systematically

improve your LLM results, you could consider using frameworks like: DSPy, Llama

Prompt Ops, Synalinks.

That said, you don’t necessarily need to use a framework. Following the prompting

guidelines outlined (clear instructions, Chain of Thought, Few-shot Learning, and

advanced strategies) can achieve highly effective results without additional frameworks.

Think of these frameworks as optional helpers for complex projects, not a requirement

for everyday prompt engineering.

Using Prompt Frameworks

This very precise guidance, which should be included as part of your overall tool

description, helps the LLM understand the exact boundaries and functionalities of each

available tool, minimizing error, and improving overall system reliability.

Pro Tip: How to Write an Effective Tool Description

The LLM's decision to use your tool depends entirely on its
description. Make it count:

Use an Active Verb: Start with a clear action.

get_current_weather is better than weather_data.

Be Specific About Inputs: Clearly state what arguments
the tool expects and their format (e.g., city (string),
date (string, YYYY-MM-DD)).

Describe the Output: Tell the model what to expect in
return (e.g., returns a JSON object with "high", "low",
and "conditions".).

Mention Limitations: If the tool only works for a specific
region or time frame, say so (e.g., Note: Only works for
cities in the USA.).

26 27Context engineering

Memory

When you're building agents, memory isn't just a bonus feature - it's the very thing that

breathes life into them. Without it, an LLM is just a powerful but stateless text processor

that responds to one query at a time with no sense of history. Memory transforms these

models into something that feels more dynamic and, dare we say, more ‘human’, that’s

capable of holding onto context, learning from the past, and adapting on the fly.

Andrej Karpathy gave us the perfect analogy when he compared an LLM’s context

window to a computer’s RAM and the model itself to the CPU. In this view, the context

window is the agent's active consciousness, where all its "working thoughts" are held.

But just like a laptop with too many browser tabs open, this RAM can fill up fast. Every

message, every tool output, every piece of information consumes precious tokens.

Source: Andrej Karpathy: Software Is Changing (Again)

This is where context engineering becomes an art. The goal isn’t to shove more data into

the prompt but to design systems that make the most of the active context window -

keeping essential information within reach while gracefully offloading everything else

into smarter, more persistent storage.

Memory in an AI agent is all about retaining information to navigate changing tasks,

remember what worked (or didn't), and think ahead. To build robust agents, we need to

think in layers, often blending different types of memory for the best results.

The Architecture of Agent Memory

Context Offloading is the practice of storing information outside the LLM’s active context window,
often in external tools or vector databases. This frees up the limited token space so that only the most
relevant info stays in context.

Short-Term Memory

User: “What’s the weather?”

AI: “It’s sunny, 24°C”

User: “Should I bring a jacket?”

Context Window

AI: “No need, it’s warm!”

Short-term memory is the agent's
immediate workspace. It's the "now,"
stuffed into the context window to fuel
on-the-fly decisions and reasoning. This
is powered by in-context learning, where
you pack recent conversations, actions,
or data directly into the prompt.

Because it's constrained by the model's
token limit, the main challenge is
efficiency. And, the trick is to keep this
streamlined to reduce costs and latency
without missing any details that might be
important for the next processing steps.

Long-Term Memory

Long-term memory moves past the immediate
context window, storing information externally
for quick retrieval when needed. This is what
allows an agent to build a persistent
understanding of its world and its users over
time. It's commonly powered by Retrieval-
Augmented Generation (RAG), where the agent
queries an external knowledge base (like a
vector database) to pull in relevant information.

This memory can store different kinds of
information, like for example: episodic memory to
store specific events or past interactions, or
semantic memory that holds general knowledge
and facts. This could also be information from
company documents, product manuals, or a
curated domain-knowledge base, allowing the
agent to answer questions with factual accuracy.

External Storage

Episodic Semantic

Procedural

Vector
Database

28 29Context engineering

Calculator Python

Interpreter Terminal

File System

(+embeddings)

Ethernet

Disk RAM

CPU

Other LLMs

Browser

Software 1.0 tools

“classical computer”

Peripheral devices I/O

LLM

Context

Window

Video Audio

In reality, most modern systems use a hybrid approach, blending short-term memory for

speed with long-term memory for depth. Some advanced architectures even introduce

additional layers:

Working Memory: A temporary holding area for information related to a specific,

multi-step task. For example, if an agent is booking a trip, its working memory might

hold the destination, dates, and budget until the task is complete, without cluttering

the long-term store.

Procedural Memory: This helps an agent learn and master routines. By observing

successful workflows, the agent can internalize a sequence of steps for a recurring

task, making it faster and more reliable over time.

Hybrid Memory Setup

Query

“Book me a
flight to Tokyo
in December.”

Retrieve

“User preferences,
travel domain
knowledge,

booking routines,
etc.”

Task State

“Store the task-
specific state in

the working
memory”

Context Window

Thought

“Need to check
budget, dates,
preferences”

Tool Call

“Flights API,
Weather API,

Calendar, etc.”

Thought

“Review the
context &
decide”

...
Response

“Respond & then
clear the state &
update memory”

Short-Term Memory

Working Memory Long-Term Memory
A temporary scratchpad or buffer box.

Immediate reasoning space, bounded by context limit.

Persistent storage system to retain and recall
information across sessions.

"task_id": "book_flight_001"

"task_type": "travel_booking"

"task_status": "in_progress"

"task_context":

"destination": "Tokyo"

"origin": "San Francisco"

“tools_available”: “...”

Task Context
"dates":

"departure": "2025-12-15"

"return": "2025-12-22"

"constraints":

"budget_max": 1200,

"preferred_time": "morning",

"preferred_airlines":
["JAL", "ANA"]

Parameters

"intermediate_results":

"flights_found": 12

"top_candidates":

"flight": "JAL005", "price": 1150, ...

"flight": "ANA106", "price": 1180, ...

"next_steps": ["compare_amenities", "check_baggage_policy",
"confirm_selection"]

Next Steps/Results
(general + domain knowledge)

Semantic Memory

(learned routines/decision workflows)

Procedural Memory

Episodic Memory

(past events/interactions/preferences)

Retrieval

the agent retrieves

relevant knowledge to
inform its current

decision like past travel
preferences, travel
domain knowledge

(airlines, airport codes,
visa rules, etc.), or

learned workflows.

Memory Storage

after an interaction,
or tool call, the agent
saves important
information, new user
preferences, or
successful outcomes/
workflows to its
permanent memory
for future use.

1 3

2 4

Task State Storage

the agent sends

specific, in-progress
task details to a

temporary scratchpad
to keep the main

context window from
getting cluttered.

Task Context Recall

the agent pulls the
relevant task details
back into its active
reasoning space to
continue a multi-step
process.

Effective memory management can make or break an LLM agent. Poor memory practices

lead to error propagation, where bad information gets retrieved and amplifies mistakes

across future tasks.

Here are some of the starting principles for getting things right:

Key Principles for Effective Memory
Management

Prune and Refine Your Memories

Memory isn't a write-once system. It needs regular maintenance. Periodically

scan your long-term storage to remove duplicate entries, merge related

information, or discard outdated facts. A simple metric for this could be the

recency and retrieval frequency. If a memory is old and rarely accessed, it

might be a candidate for deletion, especially in evolving environments where

old information can become a liability.

For example, a customer support agent might automatically prune

conversation logs that are over 90 days old and marked as resolved, closed,

or no longer active in the memory. It could just retain the summaries (for trend

detection and analysis) rather than full word-to-word transcripts.

Pruned

Merged

30 31Context engineering

Be Selective About What You Store

Not every interaction deserves a permanent spot in long-term storage. One must
implement some sort of filtering criteria to assess information for quality and
relevance before saving it. A bad piece of retrieved information can often lead to
context pollution, where the agent repeatedly makes the same mistakes. One
way to prevent this is to have the LLM "reflect" on an interaction and assign an
importance score before committing it to memory.

Deleted

Tailor the Architecture to the Task

There is no one-size-fits-all memory solution. A customer service bot needs a
strong episodic memory to recall user history, while an agent that analyzes
financial reports needs a robust semantic memory filled with domain-specific
knowledge. Always start with the simplest approach that works (like a basic
conversational buffer with last ‘n’ queries/responses) and gradually layer in more
advanced mechanisms as the use case demands it.

Episodic
Memory

Semantic
Memory

Optional additions:

Query
Augmentation

Tools

Query Output

Ultimately, memory is what elevates LLM agents from simple responders to intelligent

context-aware systems. Effective memory isn’t simply a passive storage… It’s an active,

managed process! The goal is to build agents that don't just store memory, but

can manage it - knowing what to remember, what to forget, and how to use the past to

reason about the future.

Master the Art of Retrieval

Effective memory is less about how much you can store and more about how well
you can retrieve the right piece of information at the right time. A simple blind
search is often not enough, so advanced techniques like reranking (using an LLM
to re-order retrieved results for relevance) and iterative retrieval (refining/
expanding a search query over multiple steps) can be used to improve the quality
of retrieved information.

Tools like the Query Agent and Personalization Agent offer these capabilities out
of the box, enabling searches across multiple collections and reranking based on
user preferences and interaction history.

Reranking

Add to

Context

RetrievalExpanded Queries

32 33Context engineering

Tools

If memory gives an agent a sense of self, then tools are what give it superpowers. By

themselves, LLMs are brilliant conversationalists and text manipulators, but they live

inside a bubble. They can't check the current weather, book a flight, or look up real-time

stock prices. They are, by design, disconnected from the living, breathing world of data

and action.

This is where tools come in. A "tool" is anything that connects an LLM agent to the

outside world, allowing it to take direct “action” in the real world and retrieve information

required to fulfill a task. Integrating tools elevates an agent from just being a

knowledgeable consultant to something that can actually get things done.

Context engineering for tools isn't just giving an agent a list of APIs and instructions. It's

about creating a cohesive workflow where the agent can understand what tools are

available, decide correctly which one to use for a specific task, and interpret the results

to move forward.

The journey to modern tool use has been a rapid evolution. Initially, devs tried to get

action out of LLMs with good old prompt engineering by tricking the model into

generating text that looked like a command. It was clever but prone to errors.

The real breakthrough was function calling, aka tool calling. This capability, now native to

most models, allows an LLM to output structured JSON that can contain the name of a

function to call and the arguments to use.

With this, there are a bunch of possibilities:

The work of context engineering here is in how you present these tools. A well-written

tool description is like a mini-prompt that guides the model, making it crystal clear what

the tool does, what inputs it needs, and what it returns.

The Evolution: From Prompts to Actions

A travel agent bot can use a

search_flights tool, and when a

user asks, "Find me a flight to

Tokyo next Tuesday," the LLM

doesn't guess the answer. It

generates a call to the function you

provided, which in turn queries a

real airline API.

For a complex request like "Plan a

weekend trip to San Francisco for

me," the agent might need to chain

several tools together: find_flights,

search_hotels, and

get_local_events. This requires the

agent to reason, plan, and execute

a multi-step workflow.

A Simple Tool A Chain of Tools

Repeat Until Goal Satisfied

Query ResponseObservationActionThought

34 35Context engineering

Giving an agent a tool is easy (mostly). Getting it to use that tool reliably, safely, and

effectively is where the real work begins. The central task of context engineering

is orchestration, i.e., managing the flow of information and decision-making as the agent

reasons about which tool to use.

This involves a few key steps that happen in the context window. Let’s break down these

key orchestration steps using Glowe, a skincare domain knowledge app powered by our

Elysia orchestration framework, as our running example.

The Orchestration Challenge

Tool Discovery: The agent needs to know what tools it has at its disposal. This is

usually done by providing a list of available tools and their descriptions in the system

prompt. The quality of these descriptions is very critical. They are the agent's only

guide to understanding what each tool does, allowing the model to understand when

to use a tool and, more importantly, when to avoid it.

In Glowe, we configure a set of specialized tools (Step 5) with precise descriptions when initializing
every new chat tree.

Tool Selection and Planning (Thought): When faced with a user request, the agent

must reason about whether a tool is needed. If so, which one? For complex tasks, it

might even need to chain multiple tools together, forming a plan (e.g., "First, search

the web for the weather; then, use the email tool to send a summary").

Here, the decision agent correctly analyzed the incoming request and selected the product_agent tool.

A rgument Formulation (Action): Once a tool is selected, the agent must figure out

what arguments to pass to it. If the tool is get_weather(city, date), the agent needs to

extract "San Francisco" and "tomorrow" from the user's query and format them

correctly. This could also be a structured request or API call with the necessary

information to use the tool.

In this case, the product_agent required a text query for searching the products collection. Notice
how the agent also corrected itself (self-healing) after generating an ill-formed argument that initially
caused an error (another key piece of orchestration).

36 37Context engineering

Reflection (Observation): After executing the tool, the output (the "observation") is

fed back into the context window. The agent then reflects on this output to decide its

next step. Was the tool successful? Did it produce the information needed to answer

the user's query? Or did it return an error that requires a different approach?

As you can see, orchestration happens through this powerful feedback loop, often called

the Thought-Action-Observation cycle. The agent observes the outcome of its action

and uses that new information to fuel its next "thought," deciding whether the task is

complete, if it needs to use another tool, or if it should ask the user for clarification.

This Thought-Action-Observation cycle forms the fundamental reasoning loop in modern agentic
frameworks like Elysia.

The Next Frontier of Tool Use
The evolution of tool use is moving more and more towards standardization. While

function/tool calling works well, it creates a fragmented ecosystem where each AI

application needs custom integrations with every external system. The Model Context

Protocol (MCP), introduced by Anthropic in late 2024, addresses this by providing a

universal standard for connecting AI applications to external data sources and tools.

They call it "USB-C for AI" - a single protocol that any MCP-compatible AI application can

use to connect to any MCP server.

So, instead of building custom integrations for each tool, developers can just create

individual MCP servers that expose their systems through this standardized interface.

Any AI application that supports MCP can then easily connect to these servers using the

JSON-RPC based protocol for client-server communication. This transforms the MxN

integration problem (where M applications each need custom code for N tools) into a

much simpler M + N problem.

This shift towards composable, standardized architectures, where frameworks enable

developers to build agents from modular, interoperable components, represents the

future of AI tooling. It changes the engineer's role from writing custom integrations to

orchestrating adaptive systems that can easily connect to any standardized external

system.

Traditional Integration vs MCP Approach

Model 1 Database

Git

Cloud Storage

Model 3

Model 2

Traditional: NxM Connections

Each model needs custom integration
with each data source

9 Total Connections

Visual inspired by : https://humanloop.com/blog/mcp

MCP: N+M Connections

Models and data sources only need
to integrate once with MCP

6 Total Connections

Database

Git

Cloud Storage

MCPModel 1

Model 3

Model 2

38 39Context engineering

Summary

Context engineering is about more than just prompting large language models, building

retrieval systems, or designing AI architectures. It’s about building interconnected,

dynamic systems that reliably work across a variety of uses and users. All the

components described in this ebook will continue to evolve as new techniques, models,

and discoveries are made, but the difference between truly functional systems and the AI

apps that fail will be how well they engineer context across their entire architecture. We

are no longer thinking in terms of just prompting a model, we’re looking at how we

architect entire context systems.

Visual inspired by Effective context engineering for AI agents, Anthropic

System Prompt System Prompt

User Message

Message History

User Message

Message History

Assistant

Message

Assistant

Message

Doc

Tool

Tool

Tool

Memory File Memory File

Memory File

Tool

Tool

Tool

Tool
Tool Call

Tool Result

Doc Doc

Doc Doc

Doc

Curation

Possible context to give model

Simple Prompt Engineering Context Engineering

Context windowContext window

Domain Knowledge

Comprehensive
Instructions

Context engineering is made up of the components described in this ebook:

Agents to act as the system's decision-making brain.

Query Augmentation to translate messy human requests into actionable intent.

Retrieval to connect the model to facts and knowledge bases.

Memory to give your system a sense of history and the power to learn.

Tools to give your application hands to interact with live data and APIs.

We are moving on from being prompters who talk to a model and instead, becoming

architects who build the world the model lives in. We - the builders, the engineers, and

the creators - know the truth: the best AI systems aren’t born from bigger models, but

from better engineering.

We can’t wait to see what you build

Ready to build the next
generation of AI applications?

Start today with a 14 day free trial
of Weaviate Cloud (WCD).

Contact UsTry Now

User

AI Agent

LLM

Weaviate Vector
Datatbase

Glossary

Memory

Tools

40 41Context engineering

