
Database Management



Indexes



Queries at runtime
Suppose we wish to execute a query such as

SELECT * FROM Employees WHERE Salary = 38000

How do you think it executes your query?



Queries at runtime
The database loads up the table and scans through each row. (Linear Search)
There it compares the Salary field to see if the value matches what was given. 
It collects all the matching results and returns them to you. 

So the time it takes to complete the query is linearly dependent on the 
number of rows - O(n).



Let's play a game
Many of you likely are familiar with the “guess a number” example where you 
are told if you are too high or too low.

For 1 to 100, you simply guess 50. 

If too high, your next guess is 25. If too low, your next guess is 75.

If 25 is too high, we will guess 12. If 25 is too low, we would instead guess 37.

And we continue this approach until we find the number.

This works because the numbers are in an order. (Binary Search)



Indexes



How does an index help?
An index is a data structure associated with a table or view and stores the 
values for a specific column and a reference to the row. Furthermore it keeps 
these in an order so that we can play our "game".

The index data structure is designed so that lookup operations are very fast - 
usually in logarithmic time: O(lg n)

If our queries utilize fields that have been indexed, we don’t need to look 
through every single row. Instead we only need to look through a much 
smaller subset. 



How does an index help?
We want to execute the same query, but now we can use an index

SELECT * FROM Employees WHERE Salary = 38000

How do you think it executes your query?



Primary Index
A primary index is an ordered file whose 
records are of fixed length with two fields
and it acts like an access structure.

The first field is of the same data type as 
the ordering key field (called the primary
 key) of the data file, and the second 
field is a pointer to a disk block 

There is one index entry (or index record)
in the index file for each block in the 
data file.



Dense vs Sparse Index
⬥ Indexes can also be characterized as dense or sparse. 
⬥ A dense index has an index entry for every search key value (and hence 

every record) in the data file. 
⬥ A sparse (or nondense) index, on the other hand, has index entries for 

only some of the search values
⬥ (Thus, a primary index is a sparse index)



Clustered Index
⬥ If file records are physically ordered on a nonkey field—which does not 

have a distinct value for each record—that field is called the clustering 
field and the data file is called a clustered file. 

⬥ We can create a different type of index, called a clustering index, to speed 
up retrieval of all the records that have the same value for the clustering 
field. 

⬥ This differs from a primary index, which requires that the ordering field 
of the data file have a distinct value for each record.

⬥ A clustering index is another example of a sparse index because it has an 
entry for every distinct value of the indexing field.

⬥ Notice that a file can have at most one physical ordering field, so it can 
have at most one primary index or one clustering index, but not both.



Clustered Index



Secondary Indexes



Secondary Index
⬥ A secondary index provides a secondary means of accessing a data file
⬥ The data file records could be ordered, unordered, or hashed. 
⬥ The secondary index may be created on a field that is a candidate key 

and has a unique value in every record, or on a nonkey field with 
duplicate values. 

⬥ The index is again an ordered file with two fields. 
⬥ The second field is either a block pointer or a record pointer. 
⬥ Many secondary indexes (and hence, indexing fields) can be created



Secondary Index
First we consider a secondary index access structure on a key (unique) field 
that has a distinct value for every record. Such a field is sometimes called a 
secondary key; in the relational model, this would correspond to any UNIQUE 
key attribute or to the primary key attribute of a table. In this case there is one 
index entry for each record in the data file, which contains the value of the 
field for the record and a pointer either to the block in which the record is 
stored or to the record itself. Hence, such an index is dense



Secondary Index
Note here this is for a secondary
key field, so each value is unique.

Because the records of the data file 
are not physically ordered by values
of the secondary key field, we 
cannot use block anchors.



Secondary Index
We can also create a secondary index on a nonkey, nonordering field of a file. 
In this case, numerous records in the data file can have the same value for the 
indexing field

⬥ Option 1 - include duplicate index entries with the same key value one 
for each record. 

⬥ Option 2 - have variable-length records for the index entries, with a 
repeating field for the pointer

⬥ Option 3 - keep the index entries themselves at a fixed length and have a 
single entry for each index field value, but to create an extra level of 
indirection to handle the multiple pointers. 
This is the most common choice.



Secondary Index
Option 3 Illustrated:



Multilevel Index
Although our last example still had a
single index file, it begets the idea of 
an indirect multi-level approach.

By adding layers, a multilevel index can
make use of block anchors to 'chop' up
the full index into pieces that are 
quickly searched. 



B-Trees and B+ Trees



Binary Trees
● The maximum number of nodes of depth k is 2k.
● A full binary tree of depth k has 2k+1-1 nodes.
● Degree of a tree is the max number of subtrees of any node (the # of children).

Sometimes referred to as k-ary. Binary trees are of degree two. 
● Depth is the distance of the node from the root.
● Height is the maximum depth of any node in the tree.



Binary Search Trees
The fundamental property of a binary search tree is that 
within any given node a key (k) is stored. The leǗ child will 
contain a key less than k while the right child will contain a key 
greater than k.



2-3 Trees
Here, every node with children will have either
● Two children and one data element

or
● Three children and two data elements 



2-3 Trees
Find 17:  [10|20] -> [15] -> [16]
Find 22: [10|20] -> [30|40] -> [25]



B-Trees
B-trees are balanced search trees designed to work well on 
disks or other secondary storage devices. (Root is in memory)
We oǗen see branching factors between 50 and 2000 
depending on the size of a key relative to the size of a page.
A B-tree with branching factor of 1001 and height 2 can store 
over one billion keys. (We can find any key in the tree with at 
most only two disk accesses)



B-Tree Summary
⬥ All the leaf nodes of the B-tree must be at the same level.
⬥ Above the leaf nodes of the B-tree, there should be no empty sub-trees.
⬥ B- tree’s height should lie as low as possible.
⬥ All internal and leaf nodes have data pointers.



B+ Tree Summary
⬥ A search requires you to travel all the way to a leaf node.
⬥ Only leaf nodes have data pointers.
⬥ All leaf nodes are linked together in a doubly-linked list.
⬥ Most RDBMS use B+ Trees for indexing. 

No internal data, means maximum number of keys can be stored, thus 
minimizing number of levels.



Hashing



Hash Function
A hash function is a mathematical function that:

⬥ takes an input value from a set with many (or infinite) members
⬦ Example: Modulus operator

⬥ produces an output from a set with a fixed (fewer) number of members. 

⬥ Hash functions are not reversible. 
⬥ Should be quickly computable.
⬥ Should evenly distribute the keys.



Modulus
We can try to use the idea of modulus as this will provide a max number 'cap' 
in which the numbers will repeat in a cycle:

0 % 6 = 0
1 % 6 = 1
2 % 6 = 2
3 % 6 = 3
4 % 6 = 4
5 % 6 = 5
6 % 6 = 0
7 % 6 = 1

Any number will 'turn into' something that fits in the range [0 .. (m-1)]



Hash Collisions
A collision is when two different keys share the same 
hash value. 
(i.e. they are put into the same 'bucket')

Due to the pigeonhole principle, if we are taking a large
number of keys and putting them into a 
smaller number of buckets, this is inevitable.

Each key value is hashed to a bucket
which then contains pointers to relevant 
data.  



Bitmap Index



Bitmap Index
Suppose we have fields that have a small number of unique values.

Here the fields Sex and Zipcode qualify:

A bitmap index is built on one particular
value of a particular field and is a bit array.

The ith bit is set to 1 if the row i has that value,
and 0 otherwise.



Bitmap Index
Multi-attribute conditions can be combined easily by using bitwise AND or OR 
operations.

In general, bitmap indexes are efficient in terms of storage space. Consider a 
file of 1 million rows/records. A bitmap index would only take up 1 million bits, 
or ~125 Kbytes. 

However, when records are deleted, renumbering rows and shiǗing bits 
becomes expensive.



What's the catch?



What's the catch?
⬥ An index takes up space. 

The larger the table, the more space it requires!
⬥ An index needs to be updated. 

Thus, whenever a row is added, removed, or updated the same operations 
will need to be performed to the index.

⬥ Thus, when designing a database index keep in mind what will be the 
likely queries.

⬥ Frequently the primary key is used.



Should you always use an index?
Indexes are less important when:

⬥ Small tables
⬥ Big tables when queries process most/all of the rows

(In short, know your use cases)



Query Examination



Examining Queries
Many DBMS have means to examine how queries will run, but are database 
dependent. It displays information from the optimizer about the statement 
execution plan

e.g. how tables are joined and in which order

MySQL:  EXPLAIN SELECT * FROM Table

https://dev.mysql.com/doc/refman/8.0/en/explain.html

SQL Server: "Display Estimated Execution Plan"

https://dev.mysql.com/doc/refman/8.0/en/explain.html


Examining Queries
Benefits:

⬥ where indexes should be added
⬥ whether the tables are joined in an optimal order
⬥ should a query be written differently?



Example
We have a table Person that has an index on the Lastname field.

-- query 1
SELECT LastName
FROM Person.Person
WHERE LastName = 'Smith';

-- query 2
SELECT LastName
FROM Person.Person
WHERE LastName LIKE 'Sm%';

-- query 3
SELECT LastName
FROM Person.Person
WHERE LastName LIKE '%mith';

-- query 4
SELECT ModifiedDate
FROM Person.Person
WHERE ModifiedDate BETWEEN '2000-01-01' and '2000-01-31';



Example
How does q1 compare to q2?

Both queries are using the same indexed field. 

One is looking for last names that are exactly 'Smith', the other is looking for last names 
that begin with 'Sm'. 

This means they can quickly jump to the 'Sm' entries in the index, and roughly look at the 
same number of entries. 

-- query 1
SELECT LastName
FROM Person.Person
WHERE LastName = 'Smith';

-- query 2
SELECT LastName
FROM Person.Person
WHERE LastName LIKE 'Sm%';



Example
How does q2 compare to q3?

Query 2 is looking for last names that begin with 'Sm' and can quickly get to just those 
within the index.

Query 3 is looking for last names that end in 'mith', and in theory any entry in the index 
could match that. So this query has to go down one by one for every single entry of the 
index looking for matches. 

-- query 2
SELECT LastName
FROM Person.Person
WHERE LastName LIKE 'Sm%';

-- query 3
SELECT LastName
FROM Person.Person
WHERE LastName LIKE '%mith';



Example
How does q3 compare to q4?

Query 3 as we saw has to look at every entry in the index.

Query 4, however, doesn't have an index. Instead, it has to load up every record within the 
table and find the data it wants and then perform a comparison. Whereas Query 3 will 
only have to pull up the records that match.

-- query 3
SELECT LastName
FROM Person.Person
WHERE LastName LIKE '%mith';

-- query 4
SELECT ModifiedDate
FROM Person.Person
WHERE ModifiedDate BETWEEN '2000-01-01' and '2000-01-31';


